Nonlinear Parabolic Equations Involving Measure Data in Musielak-Orlicz-Sobolev Spaces

M. L. Ahmed Oubeid
Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B. P. 1796 Atlas Fès, Maroc

M. Sidi El Vally
Department of Mathematics, Faculty of Science
King Khalid University
Abha 61413, Kingdom of Saudi Arabia

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

We prove the existence of solutions of nonlinear parabolic problems with measure data in Musielak-Orlicz-Sobolev spaces.

Mathematics Subject Classification: 46E35, 35K15, 35K20, 35K60

Keywords: Inhomogeneous Musielak-Orlicz-Sobolev spaces; parabolic problems; Truncations

1 Introduction

Let Ω a bounded open subset of \mathbb{R}^n and let Q be the cylinder $\Omega \times (0, T)$ with some given $T > 0$.
We consider the following nonlinear parabolic problem:

$$
\begin{align*}
\frac{\partial u}{\partial t} + A(u) &= \mu \text{ in } Q \\
u(x, t) &= 0 \text{ on } \partial\Omega \times (0, T) \\
u(x, 0) &= 0 \text{ in } \Omega
\end{align*}
$$

(1)
where $A = - \text{div} (a(x,t,u,\nabla u))$ is an operator of Leray-Lions defined on $D(A) \subset W^{1,x}_0 L^\varphi(\Omega)$, φ is an appropriate Musielak-Orlicz function related to the growth of $a(x,t,u,\nabla u)$, and μ is a given Radon measure.

Solution to problem (1) has been provided firstly by Boccardo-Gallout, [19] (see also [18, 20]) in the setting of classical spaces $L^p(0,T;W^{1,p})$. Meskine, in [10] prove the existence of solution for problem (1) in the setting of inhomogeneous Orlicz-Sobolev space $W^{1,x}_0 L_B$ for any $B \in \mathcal{P}_M$, where \mathcal{P}_M is a special class of N-functions and M the N-function. Our purpose in this paper is to prove existence solutions for the problem (1) in the setting of inhomogeneous Musielak-Orlicz-Sobolev spaces $W^{1,x}_0 L^\varphi(Q)$ for any $\varphi \in \mathcal{P}_\varphi$, where \mathcal{P}_φ is a special class of Musielak-Orlicz functions and φ the Musielak-Orlicz function.

Let us point out that our result can be applied in the particular case when $\varphi(x,t) = t^p(x)$, in this case we use the notations $L^{p(x)}(\Omega) = L^\varphi(\Omega)$, and $W^{m,p(x)}(\Omega) = W^m L^\varphi(\Omega)$. These spaces are called Variable exponent L^p and Sobolev spaces.

For some classical and recent results on elliptic and parabolic problems in Orlicz-Sobolev spaces and a Musielak-Orlicz-Sobolev spaces, we refer to [16, 15, 14, 22, 6, 7, 8, 9, 10, 17].

2 Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces. Standard reference is [11]. We also include the definition of inhomogeneous Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be used later.

Musielak-Orlicz-Sobolev spaces: Let Ω be an open subset of \mathbb{R}^n.
A Musielak-Orlicz function φ is a real-valued function defined in $\Omega \times \mathbb{R}^+$ such that:

a) $\varphi(x,t)$ is an N-function i.e. convex, nondecreasing, continuous, $\varphi(x,0) = 0$, $\varphi(x,t) > 0$ for all $t > 0$ and

$$\lim_{t \to 0} \sup_{x \in \Omega} \frac{\varphi(x,t)}{t} = 0$$

$$\lim_{t \to \infty} \inf_{x \in \Omega} \frac{\varphi(x,t)}{t} = 0.$$

b) $\varphi(.,t)$ is a Lebesgue measurable function

Now, let $\varphi_x(t) = \varphi(x,t)$ and let φ_x^{-1} be the non-negative reciprocal function with respect to t, i.e the function that satisfies

$$\varphi_x^{-1}(\varphi(x,t)) = \varphi(x,\frac{1}{\varphi_x}) = t.$$

For any two Musielak-Orlicz functions φ and γ we introduce the following ordering:
c) if there exists two positives constants \(c \) and \(T \) such that for almost everywhere \(x \in \Omega \) :

\[
\varphi(x, t) \leq \gamma(x, ct) \text{ for } t \geq T
\]

we write \(\varphi \prec \gamma \) and we say that \(\gamma \) dominates \(\varphi \) globally if \(T = 0 \) and near infinity if \(T > 0 \).

d) if for every positive constant \(c \) and almost everywhere \(x \in \Omega \) we have

\[
\lim_{t \to 0} \left(\sup_{x \in \Omega} \frac{\varphi(x, ct)}{\gamma(x, t)} \right) = 0 \quad \text{or} \quad \lim_{t \to \infty} \left(\sup_{x \in \varphi} \frac{\varphi(x, ct)}{\gamma(x, t)} \right) = 0
\]

we write \(\varphi \ll \gamma \) at 0 or near \(\infty \) respectively, and we say that \(\varphi \) increases essentially more slowly than \(\gamma \) at 0 or near infinity respectively.

In the sequel the measurability of a function \(u : \Omega \mapsto R \) means the Lebesgue measurability.

We define the functional

\[
\varrho_{\varphi, \Omega}(u) = \int_{\Omega} \varphi(x, |u(x)|) dx
\]

where \(u : \Omega \mapsto \mathbb{R} \) is a measurable function.

The set

\[
K_{\varphi}(\Omega) = \{ u : \Omega \to \mathbb{R} \text{ measurable } | \varrho_{\varphi, \Omega}(u) < +\infty \}
\]

is called the Musielak-Orlicz class (the generalized Orlicz class).

The Musielak-Orlicz space (the generalized Orlicz spaces) \(L_{\varphi}(\Omega) \) is the vector space generated by \(K_{\varphi}(\Omega) \), that is, \(L_{\varphi}(\Omega) \) is the smallest linear space containing the set \(K_{\varphi}(\Omega) \).

Equivalently:

\[
L_{\varphi}(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ measurable } | \varrho_{\varphi, \Omega}(\frac{|u(x)|}{\lambda}) < +\infty, \text{ for some } \lambda > 0 \right\}
\]

Let

\[
\psi(x, s) = \sup_{t \geq 0} \{ st - \varphi(x, t) \},
\]

\(\psi \) is the Musielak-Orlicz function complementary to (or conjugate of) \(\varphi(x, t) \) in the sense of Young with respect to the variable \(s \).

On the space \(L_{\varphi}(\Omega) \) we define the Luxemburg norm:

\[
|||u|||_{\varphi, \Omega} = \sup_{||v||_{\psi} \leq 1} \int_{\Omega} |u(x)v(x)| dx.
\]

and the so-called Orlicz norm:

\[
||u||_{\varphi, \Omega} = \inf_{\lambda > 0} \lambda \left\{ \int_{\Omega} \varphi(x, \frac{|u(x)|}{\lambda}) dx, \leq 1 \right\}.
\]
where \(\psi \) is the Musielak-Orlicz function complementary to \(\varphi \). These two norms are equivalent [11].

The closure in \(L_\psi(\Omega) \) of the set of bounded measurable functions with compact support in \(\Omega \) is denoted by \(E_\varphi(\Omega) \). It is a separable space and \(E_\varphi(\Omega)^* = L_\psi(\Omega) \) [11].

The following conditions are equivalent:

\[
e) \quad E_\varphi(\Omega) = K_\varphi(\Omega)
\]

\[
f) \quad K_\varphi(\Omega) = L_\varphi(\Omega)
\]

\[
g) \quad \varphi \text{ has the } \Delta_2 \text{ property.}
\]

We recall that \(\varphi \) has the \(\Delta_2 \) property if there exists \(k > 0 \) independent of \(x \in \Omega \) and a nonnegative function \(h \), integrable in \(\Omega \) such that \(\varphi(x, 2t) \leq k \varphi(x, t) + h(x) \) for large values of \(t \), or for all values of \(t \), according to whether \(\Omega \) has finite measure or not.

Let us define the modular convergence: we say that a sequence of functions \(u_n \in L_\varphi(\Omega) \) is modular convergent to \(u \in L_\varphi(\Omega) \) if there exists a constant \(k > 0 \) such that

\[
\lim_{n \to \infty} \varrho_{\varphi, \Omega}(u_n - u) = 0.
\]

For any fixed nonnegative integer \(m \) we define

\[
W^m L_\varphi(\Omega) = \{ u \in L_\varphi(\Omega) : \forall |\alpha| \leq m \quad D^\alpha u \in L_\varphi(\Omega) \}
\]

where \(\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \) with nonnegative integers \(\alpha_i \); \(|\alpha| = |\alpha_1| + |\alpha_2| + ... + |\alpha_n| \) and \(D^\alpha u \) denote the distributional derivatives.

The space \(W^m L_\varphi(\Omega) \) is called the Musielak-Orlicz-Sobolev space.

Now, the functional

\[
\overline{\varrho}_{\varphi, \Omega}(u) = \sum_{|\alpha| \leq m} \varrho_{\varphi, \Omega}(D^\alpha u),
\]

for \(u \in W^m L_\varphi(\Omega) \) is a convex modular. and

\[
||u||^m_{\varphi, \Omega} = \inf \{ \lambda > 0 : \overline{\varrho}_{\varphi, \Omega}(\frac{u}{\lambda}) \leq 1 \}
\]

is a norm on \(W^m L_\varphi(\Omega) \).

The pair \((W^m L_\varphi(\Omega), ||u||^m_{\varphi, \Omega}) \) is a Banach space if \(\varphi \) satisfies the following condition:

\[
\text{there exist a constant } c > 0 \text{ such that } \inf_{x \in \Omega} \varphi(x, 1) \geq c,
\]

as in [11].
The space \(W^m L_\varphi(\Omega) \) will always be identified to a \(\sigma(\Pi L_\varphi, \Pi E_\psi) \) closed subspace of the product \(\prod_{\|\alpha\| \leq m} L_\varphi(\Omega) = \prod L_\varphi. \)

Let \(W^m_0 \varphi(\Omega) \) be the \(\sigma(\Pi L_\varphi, \Pi E_\psi) \) closure of \(D(\Omega) \) in \(W^m \varphi(\Omega). \)

The following spaces of distributions will also be used:

\[
W^{-m} L_\psi(\Omega) = \{ f \in D'(\Omega); f = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha f_\alpha \text{ with } f_\alpha \in L_\psi(\Omega) \}
\]

\[
W^{-m} E_\psi(\Omega) = \{ f \in D'(\Omega); f = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha f_\alpha \text{ with } f_\alpha \in E_\psi(\Omega) \}
\]

As we did for \(L_\varphi(\Omega) \), we say that a sequence of functions \(u_n \in W^m L_\varphi(\Omega) \) is modular convergent to \(u \in W^m L_\varphi(\Omega) \) if there exists a constant \(k > 0 \) such that

\[
\lim_{n \to \infty} \varrho_{\varphi,\Omega}(u_n - u) = 0.
\]

From \([\Pi]\), for two complementary Musielak-Orlicz functions \(\varphi \) and \(\psi \) the following inequalities hold:

\[h) \] the young inequality:

\[t.s \leq \varphi(x,t) + \psi(x,s) \text{ for } t, s \geq 0, \ x \in \Omega \]

\[i) \] the Hölder inequality:

\[
\left| \int_{_\Omega} u(x)v(x) \ dx \right| \leq ||u||_{\varphi,\Omega}||v||_{\psi,\Omega}.
\]

for all \(u \in L_\varphi(\Omega) \) and \(v \in L_\psi(\Omega). \)

Inhomogeneous Musielak-Orlicz-Sobolev spaces:

Let \(\Omega \) an bounded open subset of \(\mathbb{R}^n \) and let \(Q = \Omega \times]0,T[\) with some given \(T > 0. \) Let \(\varphi \) be a Musielak function. For each \(\alpha \in \mathbb{N}^n, \) denote by \(D^\alpha_x \) the distributional derivative on \(Q \) of order \(\alpha \) with respect to the variable \(x \in \mathbb{R}^n. \) The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

\[
W^{1,x} L_\varphi(Q) = \{ u \in L_\varphi(Q) : \forall |\alpha| \leq 1 \ D^\alpha_x u \in L_\varphi(Q) \}
\]
and
\[W^{1,x}E_\varphi(Q) = \{ u \in E_\varphi(Q) : \forall |\alpha| \leq 1 \ D_x^\alpha u \in E_\varphi(Q) \} \]

The last space is a subspace of the first one, and both are Banach spaces under the norm
\[\| u \| = \sum_{|\alpha| \leq m} \| D_x^\alpha u \|_{\varphi,Q}. \]

We can easily show that they form a complementary system when \(\Omega \) is a Lipschitz domain [3]. These spaces are considered as subspaces of the product space \(\Pi L_\varphi(Q) \) which has \((N+1)\) copies. We shall also consider the weak topologies \(\sigma(\Pi L_\varphi, \Pi E_\psi) \) and \(\sigma(\Pi L_\varphi, \Pi L_\psi) \).

If \(u \in W^{1,x}L_\varphi(Q) \) then the function : \(t \mapsto u(t) = u(t,.) \) is defined on \((0,T)\) with values in \(W^1L_\varphi(\Omega) \). If, further, \(u \in W^{1,x}E_\varphi(Q) \) then this function is a \(W^1E_\varphi(\Omega) \)-valued and is strongly measurable. Furthermore the following imbedding holds: \(W^{1,x}E_\varphi(Q) \subset L^1(0,T; W^1E_\varphi(\Omega)) \). The space \(W^{1,x}L_\varphi(Q) \) is not in general separable, if \(u \in W^{1,x}L_\varphi(Q) \), we cannot conclude that the function \(u(t) \) is measurable on \((0,T)\). However, the scalar function \(t \mapsto \| u(t) \|_{\varphi,\Omega} \) is in \(L^1(0,T) \). The space \(W^{1,x}_0E_\varphi(Q) \) is defined as the (norm) closure in \(W^{1,x}E_\varphi(Q) \) of \(D(Q) \).

We can easily show as in [3] that when \(\Omega \) a Lipschitz domain then each element \(u \) of the closure of \(D(Q) \) with respect of the weak * topology \(\sigma(\Pi L_\varphi, \Pi E_\psi) \) is limit, in \(W^{1,x}L_\varphi(Q) \), of some subsequence \((u_i) \subset D(Q) \) for the modular convergence; i.e., there exists \(\lambda > 0 \) such that for all \(|\alpha| \leq 1 \),

\[\int_Q \varphi(x, (\frac{D_x^\alpha u_i - D_x^\alpha u}{\lambda})) dx dt \to 0 \text{ as } i \to \infty, \]

this implies that \((u_i) \) converges to \(u \) in \(W^{1,x}L_\varphi(Q) \) for the weak topology \(\sigma(\Pi L_M, \Pi L_\psi) \).

Consequently
\[D(Q)^\sigma(\Pi L_\varphi, \Pi E_\psi) = \overline{D(Q)^\sigma(\Pi L_\varphi, \Pi L_\psi)}, \]

this space will be denoted by \(W^{1,x}_0L_\psi(Q) \). Furthermore, \(W^{1,x}_0E_\varphi(Q) = W^{1,x}_0L_\varphi(Q) \cap \Pi E_\psi \).

We have the following complementary system
\[\begin{pmatrix} W^{1,x}_0L_\varphi(Q) \\ W^{1,x}_0E_\varphi(Q) \end{pmatrix} \bigg/ F, \]

\(F \) being the dual space of \(W^{1,x}_0E_\varphi(Q) \). It is also, except for an isomorphism, the quotient of \(\Pi L_\psi \) by the polar set \(W^{1,x}_0E_\varphi(Q)^{\perp} \), and will be denoted by \(F = W^{-1,x}L_\psi(Q) \) and it is shown that
\[W^{-1,x}L_\psi(Q) = \left\{ f = \sum_{|\alpha| \leq 1} D_x^\alpha f_\alpha : f_\alpha \in L_\psi(Q) \right\}. \]

This space will be equipped with the usual quotient norm
\[\| f \| = \inf \sum_{|\alpha| \leq 1} \| f_\alpha \|_{\psi,Q}. \]
where the inf is taken on all possible decompositions

\[f = \sum_{|\alpha| \leq 1} D^\alpha_x f_\alpha, \quad f_\alpha \in L_\psi(Q). \]

The space \(F_0 \) is then given by

\[F_0 = \left\{ f = \sum_{|\alpha| \leq 1} D^\alpha_x f_\alpha : f_\alpha \in E_\psi(Q) \right\} \]

and is denoted by \(F_0 = W^{-1,a}E_\psi(Q) \).

In order to deal with the time derivative, we introduce a time mollification of a function \(u \in L_\phi(Q) \).

Thus we define, for all \(\mu > 0 \) and all \((x, t) \in Q \)

\[u_\mu(x, t) = \mu \int_{-\infty}^t \tilde{u}(x, s) \exp(\mu(s - t)) ds, \]

where \(\tilde{u}(x, s) = u(x, s)\chi_{(0,T)}(s) \) is the zero extension of \(u \).

Proposition 1. If \(u \in L_\phi(Q) \) then \(u_\mu \) is measurable in \(Q \) and \(\frac{\partial u_\mu}{\partial t} = \mu(u - u_\mu) \) and if \(u \in L_\psi(Q) \) then

\[\int_Q \varphi(x, u_\mu) dx dt \leq \int_Q \varphi(x, u) dx dt. \]

Proof. Since \((x, t, s) \mapsto u(x, s)\exp(\mu(s - t)) \) is measurable in \(\Omega \times [0, T] \times [0, T] \), we deduce that \(u_\mu \) is measurable by Fubini’s theorem. By Jensen’s integral inequality we have, since \(\int_{-\infty}^0 \exp(\mu s) ds = 1 \),

\[\varphi(x, \int_{-\infty}^t \mu \tilde{u}(x, s) \exp(\mu(s - t)) ds) = \varphi(x, \int_{-\infty}^0 \mu \exp(\mu s) \tilde{u}(x, s + t) ds) \leq \int_{-\infty}^0 \mu \exp(\mu s) \varphi(x, \tilde{u}(x, s + t)) ds \]

which implies

\[\int_Q \varphi(x, u_\mu(x, t)) dx dt \leq \int_{\Omega \times \mathbb{R}} \left(\int_{-\infty}^0 \mu \exp(\mu s) \varphi(x, \tilde{u}(x, s + t)) ds \right) dx dt \]

\[\leq \int_{-\infty}^0 \mu \exp(\mu s) \left(\int_{\Omega \times \mathbb{R}} \varphi(x, \tilde{u}(x, s + t)) dx dt \right) ds \]

\[\leq \int_{-\infty}^0 \mu \exp(\mu s) \left(\int_Q \varphi(x, u(x, t)) dx dt \right) ds \]

\[= \int_Q \varphi(x, u) dx dt. \]
Furthermore
\[\frac{\partial u}{\partial t} = \lim_{\delta \to 0} \frac{1}{\delta} (\exp(-\mu \delta) - 1) u_\mu(x, t) + \lim_{\delta \to 0} \frac{1}{\delta} \int_t^{t+\delta} u(x, s) \exp(\mu(s-(t+\delta))) ds = -\mu u_\mu + \mu u. \]

Proposition 2. Assume that \((u_n)_n\) is a bounded sequence in \(W^{1,x}_0(Q)\) such that \(\frac{\partial u_n}{\partial t}\) is bounded in \(W^{-1,x}_0(Q) + L^1(Q)\), then \(u_n\) is relatively compact in \(L^1(Q)\).

Proof. It is easily by using Corollary 1 of [14].

3 The Main Result

Let \(\mathcal{P}_\varphi\) be a subset of Musielak-Orlicz functions defined by:

\[\mathcal{P}_\varphi = \left\{ \phi : \Omega \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \text{ is a Musielak-Orlicz function, such that } \phi \ll \varphi \right\} \]

where \(H(x, r) = \varphi(x, r)/r\).

we assume that

\[\mathcal{P}_\varphi \neq \emptyset \quad (2) \]

Let \(A : D(A) \subset W^{1,x}_0(Q) \rightarrow W^{-1,x}_0(Q)\) be a mapping given by \(A(u) = -\text{div} a(x, t, u, \nabla u)\) where \(a : Q \times \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^n\) be Caratheodory function satisfying for a.e \((x, t) \in \Omega\) and all \(s \in \mathbb{R}, \xi, \eta \in \mathbb{R}^n\) with \(\xi \neq \eta\):

\[
|a(x, t, s, \xi)| \leq \beta \varphi(x, |\xi|)/|\xi| \quad (3)
\]

\[
(a(x, t, s, \xi) - a(x, s, \eta))(\xi - \eta) > 0 \quad (4)
\]

\[
a(x, t, s, \xi) \xi \geq \alpha \varphi(x, |\xi|) \quad (5)
\]

where \(\alpha, \beta > 0\). Furthermore, assume that there exists \(D \in \mathcal{P}_\varphi\) such that

\[D \circ H^{-1} \text{ is a Musielak-Orlicz function}. \quad (6) \]

Set \(T_k(s) = (-k, \min(k, s)), \forall s \in \mathbb{R}\), for all \(k \geq 0\).

Denote by \(\mathcal{M}_b(Q)\) the set of all bounded Radon measure defined on \(Q\) and by \(T_0^{1,\varphi}(Q)\) as the set of measurable functions \(Q \rightarrow \mathbb{R}\) such that \(T_k(u) \in W^{1,\varphi}_0(Q) \cap D(A)\). Assume that \(f \in \mathcal{M}_b(\Omega)\), and consider the following nonlinear parabolic problem with Dirichlet boundary

\[\frac{\partial u}{\partial t} + A(u) = f \text{ in } Q. \quad (7) \]

Theorem 1. Assume that (2)-(6) hold and \(f \in \mathcal{M}_b(Q)\). Then there exists at least one weak solution of the problem

\[
\begin{cases}
 u \in T^{1,\varphi}_0(Q) \cap W^{1,x}_0(Q), \forall \phi \in \mathcal{P}_\varphi \\
 - \int_Q u \frac{\partial \phi}{\partial t} + \int_\Omega a(x, t, u, \nabla u) \nabla v dx = \langle f, v \rangle, \forall v \in D(Q).
\end{cases}
\]
Proof. The proof will be given in two steps.

step 1. A priori estimates.
Consider now the following approximate equations:

\[
\begin{align*}
\left\{
\begin{array}{l}
 u_n \in W_0^{1,x}(Q), u_n(x, 0) = 0, \\
 \frac{\partial u_n}{\partial t} - \text{div}(a(x, t, u_n, \nabla u_n)) = f_n
 \end{array}
\right.
\]

(8)

where \(f_n \) is a smooth function which converges to \(f \) in the distributional sense and
\(\|f_n\|_{L^1(Q)} \leq \|f\|_{\mathcal{M}_b(Q)}. \) By Theorem 2 of [15], there exists at least one solution \(u_n \)
of (8).

For \(k > 0 \), by taking \(T_k(u_n) \) as test function in (8), one has

\[
\int_{\Omega} a(x, t, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx \leq Ck.
\]

In view of (5), we get

\[
\int_{\Omega} \phi(x, |\nabla T_k(u_n)|) dx \leq Ck.
\]

Take a \(C^2(\mathbb{R}) \), and nondecreasing function \(\beta_k \) such that \(\beta_k(s) = s \) for \(|s| \leq \frac{k}{2} \) and \(\beta_k(s) = k \text{ sign } s \) if \(|k| > s \).

Multiplying the approximate equation (8) by \(\beta_k'(u_n) \), we get

\[
\frac{\partial \beta_k(u_n)}{\partial t} - \text{div}(a(x, t, u_n, \nabla u_n)\beta_k'(u_n)) + a(x, t, u_n, \nabla u_n)\nabla u_n \beta_k''(u_n) = f_n \beta_k'(u_n) \text{ in } D'(Q).
\]

Which implies easily that \(\frac{\partial \beta_k(u_n)}{\partial t} \) is bounded in \(W^{-1,x}(\Phi, L^1(Q) + L^1(Q). \) Thanks to Proposition 2, we deduce that \(\beta_k(u_n) \) is compact in \(L^1(\Omega) \).

Then as in [21] and by the proof of Theorem 3 of [13], we deduce that there exists \(u \in L^\infty(0, T; L^1(\Omega)) \) such that: \(u_n \to u \) almost everywhere in \(Q \) and

\[
T_k(u_n) \rightharpoonup T_u \text{ weakly in } W_0^{1,x}(\Phi, L^1(Q) \text{ for } \sigma(\Pi L_\Phi, \Pi E_\psi).
\]

(9)

Now, let \(\phi \in \mathcal{P}_\Phi \). By a slight adaptation of the context of Lemma 2.1. of [16], it follows that

\[
\int_Q \phi(x, |\nabla(u_n)|) dx \leq C, \forall n.
\]

(10)

We shall show that \(a(x, t, (u_n), \nabla(u_n)) \nabla(u_n) \) is bounded in \((\Phi(Q)) \).

Let \(\omega \in (E_\Phi(Q))^n \) with \(\|\omega\|_{\Phi} = 1 \). By (5) and Young inequality, one has

\[
\int_Q a(x, t, T_k(u_n), \nabla T_k(u_n)) \omega dx
\]

\[
\leq \beta \int_Q \psi(x, \frac{\phi(x, |\nabla T_k(u_n)|)}{|\nabla T_k(u_n)|}) dx + \beta \int_Q \phi(x, |\omega|) dx
\]

\[
\leq \beta \int_Q \phi(x, |\nabla T_k(u_n)|) dx + \beta
\]
This last inequality is deduced from the fact that $\psi(x, \varphi(x, u)/u) \leq \varphi(x, u)$, for all $u > 0$, and
\[\int_Q \varphi(x, |\omega|)dx \leq 1. \] In view of (10),
\[\int_{\Omega} a(x, t, T_k(u_n), \nabla T_k(u_n))\omega dx \leq Ck + \beta, \]
which implies that $(a(x, t, T_k(u_n), \nabla T_k(u_n)) \omega)$ is a bounded sequence in $(L_\psi(Q))^n$.

step 2. Almost everywhere convergence of the gradient and passage to the limit. Since $T_k(u) \in W_0^{1,x} L_c(Q)$, then there exists a sequence $(\alpha_j^k) \subseteq D(Q)$ such that $(\alpha_j^k) \rightarrow T_k(u)$ for the modular convergence in $W_0^{1,x} L_c(Q)$. For the remaining of this article, χ_s and $\chi_{j,s}$ will denoted respectively the characteristic functions of the sets $Q_s = \{(x, t) \in Q; |\nabla T_k(u(x, t))| \leq s\}$ and $Q_{j,s} = \{(x, t) \in Q; |\nabla T_k(v_j(x, t))| \leq s\}$.

For the sake of simplicity, we will write only $\varepsilon(n, j, \mu, s)$ to mean all quantities (possibly different) such that
\[\lim_{n \rightarrow \infty} \lim_{j \rightarrow \infty} \lim_{\mu \rightarrow \infty} \lim_{s \rightarrow \infty} \varepsilon(n, j, \mu, s) = 0. \]

For every $\mu > 0$, we define
\[w_\mu(x, t) = \mu \int_{-\infty}^{t} \exp(\mu(s - t))w(x, t)\chi[0,T](s)ds, \]
the time regularized of any function $w \in W_0^{1,x} L_c(Q)$.

Taking now $\nabla_T(u_n - T_k(\alpha_j^k) \mu)$ as test function in (8), we obtain
\[\langle \partial u_n \partial t, T_\mu(u_n - T_k(\alpha_j^k), \mu) \rangle + \int_Q a(x, t, u_n, \nabla(u_n))\nabla T_\mu(u_n - T_k(u))dx \leq C_\eta \]

The first term of the left hand side of the last equality reads as
\[\langle \partial u_n \partial t, T_\mu(u_n - T_k(\alpha_j^k), \mu) \rangle = \langle \partial u_n \partial t, T_k(\alpha_j^k) \mu \rangle + \langle T_k(\alpha_j^k) \mu, T_\mu(u_n - T_k(\alpha_j^k), \mu) \rangle. \]

The second term of the last equality can be easily to see that is positive and the third term can be written as
\[\langle \partial T_k(\alpha_j^k) \mu \partial t, T_\mu(u_n - T_k(\alpha_j^k), \mu) \rangle = \mu \int_Q (T_k(\alpha_j^k) - T_k(\alpha_j^k), \mu)(T_\mu(u_n - T_k(\alpha_j^k), \mu))dxdt, \]
thus by letting $n, j \rightarrow \infty$ and since $(\alpha_j^k) \rightarrow T_k(u)$ a.e. in Q and by using Lebesgue Theorem,
\[\int_Q (T_k(\alpha_j^k) - T_k(\alpha_j^k), \mu)(T_\mu(u_n - T_k(\alpha_j^k), \mu))dxdt = \int_Q (T_k(u) - T_k(u), \mu)(T_\mu(u - T_k(u), \mu))dxdt + \varepsilon(n, j). \]
Consequently
\[
\langle \frac{\partial u_n}{\partial t}, T_\eta(u_n - T_k(\alpha_j^k)_\mu) \rangle \geq \varepsilon(n, j).
\]

On the other hand,
\[
\int_Q a(x, t, u_n, \nabla(u_n)) \cdot \nabla T_\eta(u_n - T_k(\alpha_j^k)_\mu) \, dx \, dt
= \int_{\{T_k(u_n) - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)_\mu \chi_{j,s}) \, dx \, dt
+ \int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla u_n \, dx \, dt
- \int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_\mu \chi(\nabla T_k(\alpha_j^k)_\mu > s) \, dx \, dt,
\]
which implies, by using the fact that
\[
\int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla u_n \, dx \, dt \geq 0,
\]
\[
\int_{\{T_k(u_n) - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)_\mu \chi_{j,s}) \, dx \, dt \leq C \eta
\]
\[
+ \int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_\mu \chi(\nabla T_k(\alpha_j^k)_\mu > s) \, dx \, dt.
\]
Since \(a(x, t, T_k(\eta)(u_n), \nabla T_k(\eta)(u_n))\) is bounded in \((L^\psi(\Omega))^n\), there exists some \(h_{k+\eta} \in (L^\psi(\Omega))^n\) such that
\[
a(x, t, T_k(\eta)(u_n), \nabla T_k(\eta)(u_n)) \to h_{k+\eta}
\]
weakly in \((L^\psi(\Omega))^n\) for \(\sigma(\Pi L^\psi, \Pi E_\varphi)\).
Consequently
\[
\int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_\mu \chi(\nabla T_k(\alpha_j^k)_\mu > s) \, dx \, dt
= \int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} h_{k+\eta} \nabla T_k(\alpha_j^k)_\mu \chi(\nabla T_k(\alpha_j^k)_\mu > s) \, dx \, dt + \varepsilon(n),
\]
where we have used the fact that \(\nabla T_k(\alpha_j^k)_\mu \chi_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}}\) tends strongly to \(\nabla T_k(\alpha_j^k)_\mu \chi_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}}\) in \((E_\varphi(Q))^n\). Letting \(j \to \infty\), we obtain
\[
\int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_\mu \chi(\nabla T_k(\alpha_j^k)_\mu > s) \, dx \, dt
= \int_{\{k < |u_n| \cap \{u_n - T_k(\alpha_j^k)_\mu \mid \eta\}} h_{k+\eta} \nabla T_k(u)_\mu \chi(\nabla T_k(u)>s) \, dx \, dt + \varepsilon(n, j).
\]
Thanks to Proposition 1, one easily has
\[
\int_{\{k<\mu\} \cap \{|u-T_k(u)_\mu|<\eta\}} h_{k+\eta} \nabla T_k(u) \mu \chi_{\{|\nabla T_k(u)|>s\}} \, dx dt \\
= \int_{\{k<\mu\} \cap \{|u-T_k(u)_\mu|<\eta\}} h_{k+\eta} \nabla T_k(u) \chi_{\{|\nabla T_k(u)|>s\}} \, dx dt + \varepsilon(\mu).
\]

Hence
\[
\int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \mu \chi_{j,s}) \, dx dt + C \eta + \varepsilon(n, j, \mu, s).
\]

On the other hand, remark that
\[
\int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s}) \, dx dt \\
= \int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s}) \, dx dt \\
+ \int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \mu \chi_{j,s}) \, dx dt.
\]

The latest integral tends to 0 as \(n\) and \(j\) go to \(\infty\). Indeed, we have
\[
\int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \mu \chi_{j,s}) \, dx dt
\]
tends to
\[
\int_{\{|T_k(u) - T_k(\alpha_j^k)_\mu|<\eta\}} h_k [\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \mu \chi_{j,s}] \, dx dt
\]
as \(n \to \infty\), since
\[
a(x, t, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup h_k \text{ weakly in } (L^p(\Omega))^n \text{ for } \sigma(\Pi L^p, \Pi E^p),
\]
while \(\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \mu \chi_{j,s} \in (E^p(Q))^n\). It’s obvious that
\[
\int_{\{|T_k(u) - T_k(\alpha_j^k)_\mu|<\eta\}} h_k [\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(\alpha_j^k) \mu \chi_{j,s}] \, dx dt
\]
goes to 0 as \(j, \mu \to \infty\) by using Lebesgue theorem. We deduce then that
\[
\int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s}) \, dx dt + C \eta + \varepsilon(n, j, \mu, s).
\]

Let \(0 < \delta < 1\). We have
\[
\int_{Q^r} \left[a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u)) \right] \times [\nabla T_k(u_n) - \nabla T_k(u)]^\delta \, dx dt \leq C \text{ mea } \{|T_k(u_n) - T_k(\alpha_j^k)_\mu| < \eta\}^\delta
\]
\[
+ C [\int_{\{|T_k(u_n) - T_k(\alpha_j^k)_\mu|<\eta\} \cap Q^r} [a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u))] \times [\nabla T_k(u_n) - \nabla T_k(u)]^\delta \, dx dt].
\]
On the other hand, we have for every $s \geq r$

\[
\int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta \cap Q_r\}} \left[a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u)) \right] \\
\times [\nabla T_k(u_n) - \nabla T_k(u)] dxdt \\
\leq \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} \left[a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u) \chi_{s}) \right] \\
\times [\nabla T_k(u_n) - \nabla T_k(u) \chi_{s}] dxdt \\
\leq \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} \left[a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) \right] \\
\times [\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s}] dxdt \\
+ \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(\alpha_j^k) \chi_{j,s} - \nabla T_k(u) \chi_{s}] dxdt \\
+ \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} [a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) \chi_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}}] \\
- a(x, t, T_k(u_n), \nabla T_k(u) \chi_{s})] \nabla T_k(u_n) dxdt \\
- \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) \nabla T_k(\alpha_j^k) \chi_{j,s} dxdt \\
+ \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u) \chi_{s}) \nabla T_k(u) \chi_{s} dxdt \\
\leq I_1(n, j, \mu, s) + I_2(n, j, \mu, s) + I_3(n, j, \mu, s) + I_4(n, j, \mu, s) + I_5(n, j, \mu, s). \tag{12}
\]

We shall go to limit as n, j, μ and $s \to \infty$ in the last fifth integrals of the last side. Starting with I_1, we have

\[
I_1(n, j, \mu, s) \leq C \eta + \varepsilon(n, j, \mu, s) - \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) \nabla T_k(\alpha_j^k) \chi_{j,s} dxdt
\]

since

\[
a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) \chi_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} \to a(x, t, T_k(u), \nabla T_k(\alpha_j^k) \chi_{j,s}) \chi_{\{T_k(u) - T_k(\alpha_j^k)_{\mu} < \eta\}} \text{ in } (E_\psi(Q))^n
\]

while

\[
\nabla T_k(u_n) \to \nabla T_k(u) \text{ weakly}
\]

we deduce then that

\[
\int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k) \chi_{j,s}) [\nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s}] dxdt
\]

\[
= \int_{\{T_k(u_n) - T_k(\alpha_j^k)_{\mu} < \eta\}} a(x, t, T_k(u), \nabla T_k(\alpha_j^k) \chi_{j,s}) [\nabla T_k(u) - \nabla T_k(\alpha_j^k) \chi_{j,s}] dxdt + \varepsilon(n)
\]
which gives by letting \(j \to \infty \) and using the modular convergence of \(\nabla T_k(\alpha_j^k) \)

\[
\int\int_{\{T_k(u_n) - T_k(\alpha_j^k) < \eta\}} a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k)\chi_{j,s})[\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)\chi_{j,s}] \, dx \, dt + \varepsilon(n)
\]

\[
= \int\int_{Q} a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k)\chi_{j,s})[\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)\chi_{j,s}] \, dx \, dt + \varepsilon(j) = \varepsilon(j).
\]

Finally

\[
I_1(n, j, \mu, s) \leq C \eta + \varepsilon(n, j, \mu, s) + \varepsilon(n, j) = \varepsilon(n, j, \mu, s, \eta).
\]

For what concerns \(I_2 \), by letting \(n \to \infty \), we have

\[
I_2(n, j, \mu, s) = \int\int_{\{T_k(u_n) - T_k(\alpha_j^k) < \eta\}} h_k[\nabla T_k(\alpha_j^k)\chi_{j,s} - \nabla T_k(u)\chi_{j,s}] \, dx \, dt + \varepsilon(n)
\]

since

\[
a(x, t, T_k(u_n), \nabla T_k(\alpha_j^k)\chi_{j,s})\chi_{\{T_k(u_n) - T_k(\alpha_j^k) < \eta\}} \to h_k \text{ for } \sigma(\Pi L \psi, E_\varphi)
\]

while

\[
\chi_{\{T_k(u_n) - T_k(\alpha_j^k) < \eta\}}[\nabla T_k(\alpha_j^k)\chi_{j,s} - \nabla T_k(u)\chi_{j,s}] \to \\
\chi_{\{T_k(u) - T_k(\alpha_j^k) < \eta\}}[\nabla T_k(\alpha_j^k)\chi_{j,s} - \nabla T_k(u)\chi_{j,s}] \text{ strongly in } (E_\varphi(Q))^n.
\]

By letting now \(j \to \infty \), and using Lebesgue theorem, we deduce then that

\[
I_2(n, j, \mu, s) = \varepsilon(n, j).
\]

Similar tools as above, give

\[
I_3(n, j, \mu, s) = \varepsilon(n, j)
\]

\[
I_4(n, j, \mu, s) = -\int\int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n))\nabla T_k(u) + \varepsilon(n, j, \mu, s)
\]

\[
I_5(n, j, \mu, s) = \int\int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n))\nabla T_k(u) + \varepsilon(n, j, \mu, s).
\]

Combining (11), (12), (13), (14) and (15), we have

\[
\int\int_{Q} [(a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u_n))) \times (\nabla T_k(u_n) - \nabla T_k(u))]^\delta \, dx \, dt
\]

\[
\leq C(\text{meas}\{T_k(u_n) - T_k(\alpha_j^k) < \eta\})^\delta + C(\varepsilon(n, j, \mu, s, \eta))^\delta
\]
and by passing to the limit sup over \(n, j, \mu, s\) and \(\eta\)
\[
\lim_{n \to \infty} \int_{Q_r} \left[[a(x, t, T_k(u_n), \nabla T_k(u_n)) - a(x, t, T_k(u_n), \nabla T_k(u))] \times [\nabla T_k(u_n) - \nabla T_k(u)] \right] \delta \, dx \, dt = 0
\]
and thus, there exists subsequence also denote by \((u_n)\) such that
\[
\nabla u_n \to \nabla u \text{ a.e. in } Q_r,
\]
and since \(r\) is arbitrary, we have
\[
\nabla u_n \to \nabla u \text{ a.e in } Q.
\]

On the other hand, thanks to (3), (6) and (10), we deduce that
\[
\int_Q D \circ H^{-1}(s, \frac{|a(x, t, u_n, \nabla u_n)|}{\beta}) \, dx \, dt \leq \int_\Omega D(x, |\nabla u_n|) \, dx \, dt \leq C
\]
Hence
\[
a(x, t, u_n, \nabla u_n) \rightharpoonup a(x, t, u, \nabla u)
\]
weakly for \(\sigma(\Pi_{D_0H^{-1}}, \Pi_{E_{D_0H^{-1}}})\)

Going back to approximate equations (8), and using \(v \in D(Q)\) as the test function, one has
\[
- \int_Q u_n \frac{\partial v}{\partial t} \, dx \, dt + \int_Q a(x, t, u_n, \nabla u_n) \nabla v \, dx \, dt = \langle f_n, v \rangle
\]
in which we can pass to the limit since we have
\[
u_n \to u \text{ strongly in } (E_\gamma(Q))^n \text{ for every } \gamma \ll \phi \in \mathcal{P}_\phi
\]

This completes the proof of Theorem 1.

References

Received: January 15, 2024; Published: May 18, 2024