Applied Mathematical Sciences, Vol. 17, 2023, no. 7, 325 - 330 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2023.917395

A Characterization of Unicyclic Graphs with the Same Independent Domination Number

Min-Jen Jou ^a, Jenq-Jong Lin ^{a,1} and Guan-Yu Lin ^b

^a Ling Tung University, Taichung 408284, Taiwan
 ^b National Chin-Yi University of Technology 411030, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

A set D of vertices of G is an independent dominating set if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D. The independent domination number of a graph G, denoted by i(G), is the minimum cardinality of an independent dominating set in G. A unicyclic graph is a connected graph containing exactly one cycle. For $k \geq 1$, let $\mathcal{H}(k)$ be the set of unicyclic graphs H satisfying i(H) = k. In this paper, we provide a constructive characterization of $\mathcal{H}(k)$ for all $k \geq 1$.

Mathematics Subject Classification: 05C05, 05C69

Keywords: unicyclic graph, independent dominating set, independent domination number

1 Introduction

One of the famous concepts in graph theory is Domination in graphs. The domination problem is NP-complete for an arbitrary graph [3]. Domination in graphs is now well studied in graph theory. A set D of vertices of G is an independent dominating set (IDS) if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D. The independent domination number of a graph G, denoted by i(G), is the minimum cardinality of an independent dominating set in G. If D is an IDS of G with cardinality

¹Corresponding author

i(G), then we call D an i-set of G. The independent domination number and the notation i(G) were introduced by Cockayne and Hedetniemi in [2]. Recently, it was then extensively studied for various classes of graphs in the literature (see [4],[5],[6],[7]).

For $k \geq 1$, let $\mathcal{H}(k)$ be the set of unicyclic graphs H satisfying i(H) = k. In this paper, we provide a constructive characterization of $\mathcal{H}(k)$ for all $k \geq 1$.

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. The (open) neighborhood $N_G(v)$ of a vertex v is the set of vertices adjacent to v in G, and the closed neighborhood $N_G[v]$ is $N_G[v] =$ $N_G(v) \cup \{v\}$. For any subset $A \subseteq V(G)$, denote $N_G(A) = \bigcup_{v \in A} N_G(v)$ and $N_G[A] = \bigcup_{v \in A} N_G[v]$. The degree of v is the cardinality of $N_G(v)$, denoted by $\deg_G(v)$. A vertex x is said to be a leaf of G if $\deg_G(x) = 1$. A vertex of G is a support vertex if it is adjacent to a leaf in G. We denote by L(G), and U(G)the collections of the leaves and support vertices of G, respectively. For two sets A and B, the difference of A and B, denoted by A-B, is the set of all the elements of A that are not elements of B. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph G-A obtained by removing all vertices in A and all edges incident to these vertices. A u-v path $P: u = v_1, v_2, \dots, v_k = v$ of G is a sequence of k vertices in G such that $v_i v_{i+1} \in E(G)$ for $i = 1, 2, \dots, k-1$. For any two vertices u and v in G, the distance between u and v, denoted by $dist_G(u,v)$, is the minimum length of the u-v paths in G. Denote by P_n a n-path with n vertices. The length of P_n is n-1. For other undefined notions, the reader is referred to [1] for graph theory.

The following lemmas are useful.

Lemma 2.1. For $n \ge 1$, $i(P_n) = \lceil \frac{n}{3} \rceil$.

Proof. It's true for n = 1, 2 and 3. For $n \ge 4$, let $k = \lceil \frac{n}{3} \rceil$ and $P_n : v_1, v_2, \ldots, v_n$. Suppose $D = \{v_2, \ldots, v_{3i-1}, \ldots, v_{3k-4}, v_m\}$, where m = 3k - 2 or 3k - 1 is an IDS of P_n , then $i(P_n) \le |D| = (k - 1) + 1 = k$.

Suppose, by contradiction, $i(P_n) = s \le k-1$ and $D' = \{v_{i_1}, \ldots, v_{i_s}\}$ is an *i*-set of P_n , where $i_1 < i_2 < \ldots, i_s$. We can see that $dist(v_j, v_{j+1}) \le 3$ for $j = 1, \ldots, s-1$. Then $n = |P_n| = |D'| + |P_n - D'| \le s + [1 + 2(s-1) + 1] = 3s \le 3(k-1) < n$. This is a contradiction, so $i(P_n) = k = \lceil \frac{n}{3} \rceil$.

Lemma 2.2. For $n \geq 3$, $i(C_n) = \lceil \frac{n}{3} \rceil$.

Proof. It's true for n = 3. For $n \ge 4$, let $k = \lceil \frac{n}{3} \rceil$ and $C_n : v_1, v_2, \ldots, v_n, v_1$. Assume D is an i-set of C_n and $v_1 \in D$. Then $v_2 \notin D$ and $v_n \notin D$. Let

$$P' = C_n - \{v_1, v_2, v_n\}$$
 and $D' = D - \{v_1\}$. Then D' is an *i*-set of P' , where $|P'| = n - 3$. By Lemma 2.1, $|D'| = i(P') = \lceil \frac{n-3}{3} \rceil = \lceil \frac{n}{3} \rceil - 1$. Thus $i(C_n) = |D| = |D'| + 1 = (\lceil \frac{n}{3} \rceil - 1) + 1 = \lceil \frac{n}{3} \rceil$.

Lemma 2.3. Suppose H is obtained from $H' \in \mathcal{H}(k)$ by adding one vertex v and the edge wv, where $w \in V(H')$, then $k \leq i(H) \leq k+1$. Moreover, the followings hold.

- (i) The graph $H \in \mathcal{H}(k+1)$ if and only if $w \notin D'$ for every i-set D' of H'.
- (ii) The graph $H \in \mathcal{H}(k)$ if and only if $w \in D'$ for some i-set D' of H'.

Proof. We can see that H is unicyclic. If D' is an i-set of H', then D' or $D' \cup \{v\}$ is an IDS of H. So $i(H) \leq |D'| + 1 = k + 1$. The equalities hold if and if $D' \cup \{v\}$ is an i-set of H. Thus we got (i).

If D is an i-set of H, then D, $D - \{v\}$ or $(D - \{v\}) \cup \{w\}$ is an IDS of H'. So $i(H) = |D| \ge i(H') = k$. The equalities hold if and if D_1 is an i-set of H', where $D_1 = D$ or $D_1 = (D - \{v\}) \cup \{w\}$. Note that $w \in D_1$. Thus we got (ii).

Lemma 2.4. Suppose H is obtained from $H' \in \mathcal{H}(k)$ by adding a $P_2 : v, v'$ and the edge wv, where $w \in V(H')$, then $H \in \mathcal{H}(k+1)$.

Proof. We can see that H is unicyclic. Since $v' \notin N_H[V(H')]$, this means that $i(H) \ge i(H') + 1 = k + 1$. Let D' be an i-set of H'. Then $D = D' \cup \{v'\}$ is an ISD of H. So $k + 1 \le i(H) \le |D| = |D'| + 1 = k + 1$, thus $H \in \mathcal{H}(k+1)$. \square

3 Characterization

In this section, we characterize the set $\mathcal{H}(k)$ for all $k \geq 1$. Suppose H' is a uncyclic graph and H is obtained from H' by one of the following Operations.

Operation O1. Add a new vertex v and the edge wv, where $w \in V(H')$ and $w \notin D'$ for every i-set D' of H'.

Operation O2. Add a new path P_2 and the edge wv, where $w \in V(H')$ and $v \in V(P_2)$.

Operation O3. Add a new vertex v and the edge wv, where $w \in V(H')$ and $w \in D'$ for some i-set D' of H'.

Lemma 3.1. Let $H' \in \mathcal{H}(k-1)$. Suppose H is obtained from H' by one of the Operation O1 or Operation O2, then $H \in \mathcal{H}(k)$.

Proof. Suppose H is obtained from some H' by the Operation Oi, where i = 1, 2. Then H is a unicyclic graphs.

Case 1. i = 1. By Lemma 2.3 (i), then i(H) = i(H') + 1 = k and $H \in \mathcal{H}(k)$. Case 2. i = 2. By Lemma 2.4, i(H) = i(H') + 1 = k. Therefore, $H \in \mathcal{H}(k)$. By Case 1 and Case 2, $H \in \mathcal{H}(k)$.

Lemma 3.2. Let $H' \in \mathcal{H}(k)$. Suppose that H is obtained from H' by the Operation O3, then $H \in \mathcal{H}(k)$.

Proof. We can see that H is unicyclic. By Lemma 2.3(ii), $k \le i(H) \le |D'| = i(H') = k$, thus $H \in \mathcal{H}(k)$.

Let $\mathscr{C}(1) = \{C_3\}$ and $\mathscr{A}(1) = \{C_3\} \cup \mathscr{A}'(1)$, where $\mathscr{A}'(1)$ is the collection of graphs in Figure 1.

Figure 1: The collection $\mathscr{A}'(1)$ of graphs

For $k \geq 2$, we define the following collections.

(i)
$$\mathscr{C}(k) = \{C_{3k-2}, C_{3k-1}, C_{3k}\}.$$

- (ii) $\mathscr{B}(k)$ is the collection of the unicyclic graphs H which is obtained from some $H' \in \mathscr{A}(k-1)$ by one of the Operation O1 or Operation O2.
- (iii) $\mathscr{A}'(k)$ is the collection of the unicyclic graphs H which is obtained from a sequence H_1 , where $H_1 \in \mathscr{C}(k)$ or $H \in \mathscr{B}(k), H_2, \ldots, H_m = H$ and, if $j = 1, 2, \ldots, m 1, H_{j+1}$ is obtained from H_j by the Operation O3.

(iv)
$$\mathscr{A}(k) = \mathscr{C}(k) \cup \mathscr{B}(k) \cup \mathscr{A}'(k)$$

By Lemma 2.2, we have the following lemma.

Lemma 3.3. For $k \geq 1$, $\mathscr{C}(k) \subset \mathscr{H}(k)$.

We first prove the following lemma.

Lemma 3.4. For $k \geq 1$, $\mathscr{A}(k) \subseteq \mathscr{H}(k)$.

Proof. We prove it by induction on k. It's true for k = 1. Assume that it's true for k - 1, where $k \ge 2$, and $H \in \mathscr{A}(k)$. Then H is unicyclic. We consider three cases.

Case 1. $H \in \mathcal{C}(k)$. By Lemma 3.3, then $H \in \mathcal{H}(k)$.

Case 2. $H \in \mathcal{B}(k)$. Then H is obtained from some $H' \in \mathcal{A}(k-1)$ by one of the Operation O1 or Operation O2. By the hypothesis, $H' \in \mathcal{H}(k-1)$. By Lemma 3.1, $H \in \mathcal{H}(k)$.

Case 3. $H \in \mathscr{A}'(k)$. Then H is obtained from a sequence H_1 , where $H_1 \in \mathscr{C}(k)$ or $H \in \mathscr{B}(k), H_2, \ldots, H_m = H$ and, if $j = 1, 2, \ldots, m - 1$, H_{j+1} is obtained from H_j by the Operation O3. By Case 1 and Case 2, we have that $H_1 \in \mathscr{H}(k)$. By Lemma 3.2, $i(H) = i(H_m) = i(H_{m-1}) = \cdots = i(H_1) = k$. Thus $H \in \mathscr{H}(k)$. By Case 1, Case 2 and Case 3, we have that $H \in \mathscr{H}(k)$.

Theorem 3.5 is the main theorem.

Theorem 3.5. For $k \geq 1$, $\mathscr{A}(n) = \mathscr{H}(n)$.

Proof. By Lemma 3.4, we need only prove that $\mathscr{H}(k) \subseteq \mathscr{A}(k)$ for all $k \geq 1$ and it is proved by contradiction. Suppose $H \in \mathscr{H}(k)$ and $H \notin \mathscr{A}(k)$ such that |H| is as small as possible. Let C be the cycle of H. By Lemma 3.3, then $H \neq C$ and $L(H) \neq \emptyset$. Let x be a leaf of H and w be the neighbor of x. Then $H' = H - \{x\}$ is unicyclic. By Lemma 2.3, $k - 1 \leq i(H') \leq k$. Case 1. i(H') = k.

Then $H' \in \mathscr{H}(k)$. Since |H'| < |H|, by the hypothesis, $H' \in \mathscr{A}(k)$. Since i(H) = i(H'), by Lemma 2.3 (ii), $w \in D'$ for some *i*-set D' of H'. Thus H is obtained from $H' \in \mathscr{A}(k)$ by the Operation O3, it means that $H \in \mathscr{A}(k)$. This is a contradiction.

Case 2. i(H') = k - 1.

Then $H' \in \mathcal{H}(k-1)$. Since |H'| < |H|, by the hypothesis, $H' \in \mathcal{A}(k-1)$. Since i(H) = i(H') + 1, by Lemma 2.3 (i), $w \notin D'$ for every *i*-set D' of H'. Thus H is obtained from $H' \in \mathcal{A}(k-1)$ by the Operation O1, it means that $H \in \mathcal{B}(k)$. So $H \in \mathcal{A}(k)$, this is a contradiction.

By Case 1 and Case 2, $\mathcal{H}(k) \subseteq \mathcal{A}(k)$ for all $k \geq 1$. We complete the proof.

Hence we provide a constructive characterization $\mathscr{A}(k)$ of $\mathscr{H}(k)$ for all $k \geq 1$.

References

[1] J.A. Bondy, U.S.R. Murty *Graph Theory with Application*, Springer New York, 1976.

- [2] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7 (1977), 247-261. https://doi.org/10.1002/net.3230070305
- [3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, International Kindle Paperwhite, 1979.
- [4] W. Goddard and M. Henning, Independent domination in graphs: A survey and recent results, *Discrete Math.*, 313 (2013), 839-854. https://doi.org/10.1016/j.disc.2012.11.031
- [5] J. Haviland, Independent domination in regular graphs, *Discrete Math.*, **143** (1995), 275-280. https://doi.org/10.1016/0012-365x(94)00022-b
- [6] A. V. Kostochka, The independent domination number of a cubic 3-connected graph can be much larger than its domination number, *Graphs Combin.*, **9** (1993), 235-237. https://doi.org/10.1007/bf02988312
- W. C. Shiu, X. Chen and W. H. Chan, Triangle-free graphs with large independent domination number, *Discrete Optim.*, 7 (2010), 86-92. https://doi.org/10.1016/j.disopt.2010.02.004

Received: March 15, 2023; Published: April 6, 2023