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Abstract

A set D of vertices of G is an independent dominating set if no
two vertices of D are adjacent and every vertex not in D is adjacent
to at lest one vertex in D. The independent domination number of
a graph G, denoted by i(G), is the minimum cardinality of an inde-
pendent dominating set in G. A unicyclic graph is a connected graph
containing exactly one cycle. For k ≥ 1, let H (k) be the set of unicyclic
graphs H satisfying i(H) = k. In this paper, we provide a constructive
characterization of H (k) for all k ≥ 1.
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1 Introduction

One of the famous concepts in graph theory is Domination in graphs. The
domination problem is NP-complete for an arbitrary graph [3]. Domination
in graphs is now well studied in graph theory. A set D of vertices of G is an
independent dominating set (IDS) if no two vertices of D are adjacent and
every vertex not in D is adjacent to at lest one vertex in D. The independent
domination number of a graph G, denoted by i(G), is the minimum cardinality
of an independent dominating set in G. If D is an IDS of G with cardinality
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i(G), then we call D an i-set of G. The independent domination number
and the notation i(G) were introduced by Cockayne and Hedetniemi in [2].
Recently, it was then extensively studied for various classes of graphs in the
literature (see [4],[5],[6],[7]).

For k ≥ 1, let H (k) be the set of unicyclic graphs H satisfying i(H) = k.
In this paper, we provide a constructive characterization of H (k) for all k ≥ 1.

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V (G) and E(G) denote the vertex set and the edge
set of G, respectively. The (open) neighborhood NG(v) of a vertex v is the set
of vertices adjacent to v in G, and the closed neighborhood NG[v] is NG[v] =
NG(v) ∪ {v}. For any subset A ⊆ V (G), denote NG(A) =

⋃
v∈ANG(v) and

NG[A] =
⋃

v∈A NG[v]. The degree of v is the cardinality of NG(v), denoted by
degG(v). A vertex x is said to be a leaf of G if degG(x) = 1. A vertex of G is
a support vertex if it is adjacent to a leaf in G. We denote by L(G), and U(G)
the collections of the leaves and support vertices of G, respectively. For two
sets A and B, the difference of A and B, denoted by A−B, is the set of all the
elements of A that are not elements of B. For a subset A ⊆ V (G), the deletion
of A from G is the graph G−A obtained by removing all vertices in A and all
edges incident to these vertices. A u-v path P : u = v1, v2, . . . , vk = v of G is
a sequence of k vertices in G such that vivi+1 ∈ E(G) for i = 1, 2, . . . , k − 1.
For any two vertices u and v in G , the distance between u and v, denoted
by distG(u, v), is the minimum length of the u-v paths in G. Denote by Pn a
n-path with n vertices. The length of Pn is n-1. For other undefined notions,
the reader is referred to [1] for graph theory.

The following lemmas are useful.

Lemma 2.1. For n ≥ 1, i(Pn) = dn
3
e.

Proof. It’s true for n = 1, 2 and 3. For n ≥ 4, let k = dn
3
e and Pn :

v1, v2, . . . , vn. Suppose D = {v2, . . . , v3i−1, . . . , v3k−4, vm}, where m = 3k − 2
or 3k − 1 is an IDS of Pn, then i(Pn) ≤ |D| = (k − 1) + 1 = k.

Suppose, by contradiction, i(Pn) = s ≤ k − 1 and D′ = {vi1 , . . . , vis} is
an i-set of Pn, where i1 < i2 < . . . , is. We can see that dist(vj, vj+1) ≤ 3 for
j = 1, . . . , s− 1. Then n = |Pn| = |D′|+ |Pn −D′| ≤ s + [1 + 2(s− 1) + 1] =
3s ≤ 3(k − 1) < n. This is a contradiction, so i(Pn) = k = dn

3
e.

Lemma 2.2. For n ≥ 3, i(Cn) = dn
3
e.

Proof. It’s true for n = 3. For n ≥ 4, let k = dn
3
e and Cn : v1, v2, . . . , vn, v1.

Assume D is an i-set of Cn and v1 ∈ D. Then v2 /∈ D and vn /∈ D. Let
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P ′ = Cn − {v1, v2, vn} and D′ = D − {v1}. Then D′ is an i-set of P ′, where
|P ′| = n − 3. By Lemma 2.1, |D′| = i(P ′) = dn−3

3
e = dn

3
e − 1. Thus i(Cn) =

|D| = |D′|+ 1 = (dn
3
e − 1) + 1 = dn

3
e.

Lemma 2.3. Suppose H is obtained from H ′ ∈ H (k) by adding one vertex
v and the edge wv, where w ∈ V (H ′), then k ≤ i(H) ≤ k + 1. Moreover, the
followings hold.
(i) The graph H ∈ H (k + 1) if and only if w /∈ D′ for every i-set D′ of H ′.
(ii) The graph H ∈ H (k) if and only if w ∈ D′ for some i-set D′ of H ′.

Proof. We can see that H is unicyclic. If D′ is an i-set of H ′, then D′ or
D′ ∪ {v} is an IDS of H. So i(H) ≤ |D′| + 1 = k + 1. The equalities hold if
and if D′ ∪ {v} is an i-set of H. Thus we got (i).

If D is an i-set of H, then D, D − {v} or (D − {v}) ∪ {w} is an IDS of
H ′. So i(H) = |D| ≥ i(H ′) = k. The equalities hold if and if D1 is an i-set of
H ′, where D1 = D or D1 = (D−{v})∪ {w}. Note that w ∈ D1. Thus we got
(ii).

Lemma 2.4. Suppose H is obtained from H ′ ∈ H (k) by adding a P2 : v, v′

and the edge wv, where w ∈ V (H ′), then H ∈ H (k + 1).

Proof. We can see that H is unicyclic. Since v′ /∈ NH [V (H ′)], this means that
i(H) ≥ i(H ′) + 1 = k + 1. Let D′ be an i-set of H ′. Then D = D′ ∪ {v′} is an
ISD of H. So k + 1 ≤ i(H) ≤ |D| = |D′|+ 1 = k + 1, thus H ∈ H (k + 1).

3 Characterization

In this section, we characterize the set H (k) for all k ≥ 1. Suppose H ′ is a
uncyclic graph and H is obtained from H ′ by one of the following Operations.

Operation O1. Add a new vertex v and the edge wv, where w ∈ V (H ′) and
w /∈ D′ for every i-set D′ of H ′.

Operation O2. Add a new path P2 and the edge wv, where w ∈ V (H ′) and
v ∈ V (P2).

Operation O3. Add a new vertex v and the edge wv, where w ∈ V (H ′) and
w ∈ D′ for some i-set D′ of H ′.

Lemma 3.1. Let H ′ ∈ H (k − 1). Suppose H is obtained from H ′ by one
of the Operation O1 or Operation O2, then H ∈ H (k).
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Proof. Suppose H is obtained from some H ′ by the Operation Oi, where i =
1, 2. Then H is a unicyclic graphs.

Case 1. i = 1. By Lemma 2.3 (i), then i(H) = i(H ′) + 1 = k and H ∈ H (k).

Case 2. i = 2. By Lemma 2.4, i(H) = i(H ′) + 1 = k. Therefore, H ∈ H (k).

By Case 1 and Case 2, H ∈ H (k).

Lemma 3.2. Let H ′ ∈ H (k). Suppose that H is obtained from H ′ by the
Operation O3, then H ∈ H (k).

Proof. We can see that H is unicyclic. By Lemma 2.3(ii), k ≤ i(H) ≤ |D′| =
i(H ′) = k, thus H ∈ H (k).

Let C (1) = {C3} and A (1) = {C3} ∪ A ′(1), where A ′(1) is the collection
of graphs in Figure 1.
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• •· · ·

Figure 1: The collection A ′(1) of graphs

For k ≥ 2, we define the following collections.

(i) C (k) = {C3k−2, C3k−1, C3k}.

(ii) B(k) is the collection of the unicyclic graphs H which is obtained from
some H ′ ∈ A (k − 1) by one of the Operation O1 or Operation O2.

(iii) A ′(k) is the collection of the unicyclic graphs H which is obtained from
a sequence H1, where H1 ∈ C (k) or H ∈ B(k), H2, . . . , Hm = H and, if
j = 1, 2, . . . ,m− 1, Hj+1 is obtained from Hj by the Operation O3.

(iv) A (k) = C (k) ∪B(k) ∪ A ′(k)

By Lemma 2.2, we have the following lemma.

Lemma 3.3. For k ≥ 1, C (k) ⊂ H (k).

We first prove the following lemma.

Lemma 3.4. For k ≥ 1, A (k) ⊆ H (k).
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Proof. We prove it by induction on k. It’s true for k = 1. Assume that it’s
true for k− 1, where k ≥ 2, and H ∈ A (k). Then H is unicyclic. We consider
three cases.
Case 1. H ∈ C (k). By Lemma 3.3, then H ∈ H (k).
Case 2. H ∈ B(k). Then H is obtained from some H ′ ∈ A (k − 1) by one of
the Operation O1 or Operation O2. By the hypothesis, H ′ ∈ H (k − 1). By
Lemma 3.1, H ∈ H (k).
Case 3. H ∈ A ′(k). Then H is obtained from a sequence H1, where H1 ∈ C (k)
or H ∈ B(k), H2, . . . , Hm = H and, if j = 1, 2, . . . ,m − 1, Hj+1 is obtained
from Hj by the Operation O3. By Case 1 and Case 2, we have that H1 ∈ H (k).
By Lemma 3.2, i(H) = i(Hm) = i(Hm−1) = · · · = i(H1) = k. Thus H ∈ H (k).

By Case 1, Case 2 and Case 3, we have that H ∈ H (k).

Theorem 3.5 is the main theorem.

Theorem 3.5. For k ≥ 1, A (n) = H (n).

Proof. By Lemma 3.4, we need only prove that H (k) ⊆ A (k) for all k ≥ 1
and it is proved by contradiction. Suppose H ∈ H (k) and H /∈ A (k) such
that |H| is as small as possible. Let C be the cycle of H. By Lemma 3.3, then
H 6= C and L(H) 6= ∅. Let x be a leaf of H and w be the neighbor of x. Then
H ′ = H − {x} is unicyclic. By Lemma 2.3, k − 1 ≤ i(H ′) ≤ k.
Case 1. i(H ′) = k.

Then H ′ ∈ H (k). Since |H ′| < |H|, by the hypothesis, H ′ ∈ A (k). Since
i(H) = i(H ′), by Lemma 2.3 (ii), w ∈ D′ for some i-set D′ of H ′. Thus H
is obtained from H ′ ∈ A (k) by the Operation O3, it means that H ∈ A (k).
This is a contradiction.
Case 2. i(H ′) = k − 1.

Then H ′ ∈ H (k− 1). Since |H ′| < |H|, by the hypothesis, H ′ ∈ A (k− 1).
Since i(H) = i(H ′) + 1, by Lemma 2.3 (i), w /∈ D′ for every i-set D′ of H ′.
Thus H is obtained from H ′ ∈ A (k − 1) by the Operation O1, it means that
H ∈ B(k). So H ∈ A (k), this is a contradiction.

By Case 1 and Case 2, H (k) ⊆ A (k) for all k ≥ 1. We complete the
proof.

Hence we provide a constructive characterization A (k) of H (k) for all
k ≥ 1.
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