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Abstract 

  

Four positive numbers in a rectangular array can be interpolated by the bilinear 

equation. Two new bi-quadratic equations for this array are illustrated. By the sum of 

squares of deviations test, one of them is usually better than the bilinear equation. 

Exponential interpolation equations are recommended instead of most third- and 

higher-power polynomial equations. A method for estimating the degree of four-

point curves, and certain four-point rectangles, is illustrated by examples.  
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1. Introduction  
 

Classical methods for the design of experiments apply a four-point rectangle with a 

positive number at each vertex of the rectangle. See rectangle ACIG in Fig. 1. The 

coordinate system is x = –1 .. 1, y = –1 .. 1. It is desirable to have different 

interpolation equations for rectangles so that experimental data can be analyzed in 

different ways. This permits alternative interpretations of laboratory results. 
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           Fig. 1. A four-point rectangle 

 

The familiar, standard method for interpolating Fig. 1 is the bilinear equation. That 

equation does not render curvature estimates. This deficiency can often be overcome 

by means of a bi-quadratic equation originally derived by operational methods [1]. 

Other alternatives to the bilinear equation are desirable.  

 

2. Two equations for the four-point rectangle 
 

The bilinear equation, Eq. (1), is commonly used to interpolate Fig. 1.   

 

      z = (A+C+G+I)/4 + (I+C–A–G)x/4 + (I+G–A–C)y/4 + (I+A–C–G)xy/4           (1)     

 

The operation of factoring emphasizes division and multiplication to form ratios and 

products of other expressions. A dictionary defines the word ‘parse’ as follows: To 

examine closely or subject to detailed analysis, especially by breaking into parts or 

components. Factoring and parsing need not be the same operations.  

 

Parsing of Eq. (1) can be effected by means of a bi-quadratic, polynomial equation 

for an eight-point cube [2]. Find the limit, corner-by-corner, of the top plane of the 

cube as it approaches the bottom plane of the cube. By this process, the bilinear 

equation can be parsed into two new equations: Eq. (2) and Eq. (3). 

 

     z = (A + I)/2 + (C + I – A – G)(x/4) + (G + I – A – C)(y/4)  

 

               + ((C + G – A – I)/4)(x2/2 – xy + y2/2)               (2)  

 

  z = (C + G)/2 + (C + I – A – G)(x/4) + (G + I – A – C)(y/4) 

 

            + ((A – C – G + I)/4)(x2/2 + xy + y2/2)               (3) 

 

The sum of the right-hand sides of Eqs. (2) and (3), divided by two, is the familiar 

bilinear equation on the right-hand side of Eq. (1). This verifies the parsing of Eq. (1) 

into two new equations, Eqs. (2) and (3), for Fig. 1. Now let A = 1, C = 3, G = 7, I = 

9. Equations (2) and (3) both yield z = 5+x+3y. The same result is obtained by the 

bilinear equation. Let new data in Fig. 1 be A = 1, C = 9, G = 49, I = 81. 
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Now the right-hand sides of Eq. (1), Eq. (2) and Eq. (3) are Eqs. (4), (5), and (6), 

respectively. The new equations reproduce the new numbers in Fig. 1. This test 

verifies the proper parsing of Eq. (1) into Eqs. (2) and (3).  

 

   z = 35 + 10x +30y + 6xy        (4) 

 

   z = 41 + 10x + 30y – 3x2 + 6xy – 3y2       (5) 

 

   z = 29 + 10x + 30y + 3x2 + 6xy + 3y2    (6) 

 

Trial data are prepared by applying the functions in the first column of Table 1 to the 

integers 1, 3, 7, 9 assigned as vertices A, C, G, I in Fig. 1, respectively. (The 

coordinate system x = –1 .. 1, y = –1 .. 1 applies to Fig. 1.) Table 1 lists the sums of 

the squares of the deviations of three numerical equations interpolating the trial data. 

In the first case, all of Eqs. (1), (2), and (3) render the bilinear equation,  

z = 5 + x + 3y, denoted by the letter ‘z’ in Table 1. That is the correct equation in this 

case so the sums of the squared deviations are all zero. See the first row of numbers 

in Table 1.  

   Table 1. Approximate sums of squared deviations  

   of three interpolation equations from true functions 

                

 

 

 

 

 

 

 

 

 

 

When A, C, G, I are 12, 32, 72, 92, respectively, the equation for the surface AGCI is z 

= (5+x+3y)2. This operation is denoted by “z2” in the first column of Table 1. 

Equation (3) now renders the lowest sum of squared deviations (≈ 42.7) from the 

generating function. The results in Table 1 indicate that Eq. (3) is the best choice for 

interpolating Fig. 1. That equation has the lowest sum of squared deviations in every 

case in Table 1. Equation parsing is a new and potentially useful method.  

 

3. Estimated degrees of four-point curves 
 

Four equidistant x-coordinate numbers [x1, x2, x3, x4] are [1, 2, 3, 4], respectively.  

Functions     Eq. (1)   Eq. (2) Eq. (3)   

z 0 0 0 

z2 207 512 42.7 

z3 47550 116200 10590 

2Z 49650 119870 14363 

100/z 1400 3316 467 

100/z2 2830 6416 1147 

sin(10zo) 0.0263 0.0640 0.00581 
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These numbers generate four y-coordinate numbers so that [A,C,G,I] are 12, 22,  32, 

42] = [1,4,9,16], respectively. In this case, three of Eqs. (7)–(10) render the degree of 

the data as N = 2. The equation of the curve is y = xN = x2. This method applies when 

A<C<G<I lie on a curve or on Fig. 1 above.  

 

    (G(1/N) + C(1/N) – I(1/N))N – A = 0               (7) 

 

    (A(1/N) + I(1/N) – G(1/N))N – C = 0    (8) 

 

    (I(1/N) + A(1/N) – C(1/N))N – G = 0   (9) 

 

    (C(1/N) + G(1/N) – A(1/N))N – I = 0            (10) 

 

Let [A,C,G,I] = [1,27,125,343]. These numbers are on the y-axis of a new curve. In 

this case Eq. (7) fails but Eqs. (8)–(10) render N = 3. The equation for the new curve 

is Eq. (11). These methods often apply when [A,C,G,I] are an increasing sequence of 

positive numbers derived from a simple polynomial function.  

 

     y = xN = x3                (11) 

 

Now let the equation of a new curve be represented by Eq. (12). 

 

     z = x2 + 100x                         (12) 

 

The x-axis numbers are an equidistant sequence of positive integers. The ordinate 

numbers of a new curve are [A,C,G,I] = [101,309,525,749]. Equations (7)–(10) now 

render the degree of the new curve as N ≈ 1.0671. The term 100x, a linear term 

contributes numerically more to the new data than the term x2. Hence, the degree of 

the new curve is closer to the number 1 than to the number 2. 

 

4. Interpolation of a four-point rectangle  
 

A method for interpolating four bilinear numbers in a rectangular array is the bilinear 

equation, Eq. (1). It applies in the x = –1 .. 1, y = –1 .. 1 coordinate system. A bi-

quadratic for the same array is Eq. (7) in [1] or Eq. (10) in [3]. See Eq. (13).  

 

    z = (Px + Qy + Rxy + S)2             (13) 

 

Equation (13) can be rewritten as Eq. (14).  

 

       z = (P/(x) + Q/(y) + R/(xy) + S)2            (14) 
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Four positive, bilinear numbers in a rectangular array can be treated by Eq. (14). For 

this purpose, use a new coordinate system: x = 1 .. 3, y = 1 .. 3. Equation (14) in this 

system renders four new equations: Eqs. (15) – (18). They apply to Fig. 1.  

 

    (P + Q + R + S)2 – A = 0             (15) 

 

    (P/3 + Q + R/3 + S)2 – C = 0              (16) 

 

    (P + Q/3 + R/3 + S)2 – G = 0                        (17) 

 

    (P/3 + Q/3 + R/9 +S)2 – I = 0             (18) 

 

Given the numerical values of A, C, G, I, Eqs. (15)–(18) are as a set of four 

simultaneous equations in the four unknowns P, Q, R, and S. For example, let A = 2, 

C = 4, G = 8, I = 10. Equations (15)–(18) can be solved as a set of four simultaneous 

equations for the terms P, Q, R, and S. Equations (15)–(18) are thereby transformed 

into a new set of four numerical equations. They can be rounded and abbreviated as 

Eqs. (19)–(22). 

 

   z = ((8.4331442 – 10.554465x – 3.3118239y + 6.8473578xy)2)/(x2y2)           (19) 

 

   z = ((2.0691832 – 8.4331442x – 1.1905035y + 6.1402510xy)2)/(x2y2)           (20) 

 

   z = ((–6.9308168 + 0.5668558x + 1.8094965y + 3.1402510xy)2)/(x2y2)           (21) 

 

   z = (–0.56685578 – 1.5544646x – 0.31182388y + 3.8473578xy)2)/(x2y2)           (22) 

 

Equations (19)–(22) are now converted to the x = –1 .. 1, y = –1 ..1 coordinate 

system. This conversion restates Eqs. (19)–(22) into new equations: Eqs. (23)–(26). 

The conversion is effected by changing (x) into (x+2) and (y) into (y+2).  

 

   z = (–19.2994336 – 10.554465x – 3.3118239y + 6.8473578(x+2)(y+2))2        

         / ((x+2)2(y+2)2)                                                              (23) 

 

  z = (–17.1781122 – 8.4331442x – 1.1905035y + 6.1402510(x+2)(y+2))2 

        / ((x+2)2(y+2)2)                  (24) 

 

z = (–2.17811224 + 0.56685578x + 1.8094965y + 3.1402510(x+2)(y+2))2 

      /((x+2)2(y+2)2)                  (25) 

 

z = (–4.29943274 – 1.5544646x – 0.31182388y + 3.8473578(x+2)(y+2))2 

      /((x+2)2(y+2)2)                  (26) 
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When Eqs. (23)–(26) are substituted with (x,y) = (–1,–1), or (x,y) = (1,–1), or (x,y) = 

(–1,1), or (x,y) = (1,1) the cited equations render the original data (A,C,G,I) = 

(2,4,8,10), respectively, for rectangle ACIG in Fig. 1. This remark applies within the 

limits of the rounded numerical coefficients in Eqs (23)–(26). When substituted with 

(x,y) = (0,0), Eqs. (23)–(26) render alternative estimates at the center point of the 

rectangle ACIG in Fig. 1.  The estimates are z ≈ 4.090504, z ≈ 3.406693, z ≈ 

6.737778, and z ≈ 7.686754, respectively. The predictions differ from the predictions 

of the bilinear equation and the biquadratic equation for the center point of the 

rectangle ACIG in the above Fig. 1. Note that the ordering of Eqs. (23)–(26) depends 

on the computer software used for the calculations.   

 

5. Cubic equations for rectangles of four positive numbers 
 

Let [A,C,G,I] in Fig. 1 be [1,3,7,9], respectively. These numbers are bilinear so they 

can be interpolated by the bilinear equation as in Eq. (27). 

 

     z = (5 + x + 3y)             (27) 

 

When the cited numbers are squared they become [1,9,49,81], respectively. There are 

eight different interpolation equations for these numbers: Eqs. (15)–(22) in [3]. The 

product of Eq. (27) and Eq. (15) in [3] is Eq. (28). This equation is bicubic in the 

variables ‘x’ and ‘y’.  

 

    z = (5 + x + 3y)(xy – 3x – 7y – 9)2/4            (28) 

 

Equations (29), (30), and (31) are alternative examples of this easy method for 

generating bicubic equations for certain rectangles as illustrated in [3].  

 

    z = (5 + x + 3y)(xy + 5y + 3)2             (29) 

 

      z = (xy – 3x – 7y –9)4 / (16(5 + x + 3y))            (30) 

 

    z = (5xy + 3x +y)4 / (5 + x + 3y)                       (31) 

 

Many four-point interpolation problems involve positive numbers in a rectangular 

array. Such numbers can be interpolated by the bilinear equation. They can also be 

interpolated by means of a biquadratic equation [1]. Sections (2), (4), and (5) in [7] 

address this problem by different methods.  

 

For many years, a biquadratic equation for a four-point rectangle of positive numbers 

was regarded as impossible. The original form of a biquadratic equation for a  
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rectangle defined by four positive numbers appears as Eq. (7) in [1]. An alternative  

form of this equation appears as Eq. (32). Within round-off errors, both equations 

render the same results when substituted with the same numerical data. Note the 

alternative form of the constant term in Eq. (32).  

 

 z = (A + C + G + I)/4 – x2c –y2c + (I + C – A – G)x/4 + (G + I – A – C)(y/4)  

 

            + (I + A – C – G)(xy/4) + (x2c)x2 + (y2c)y2                 (32) 

 

      x2c = (I + A – C – G)(I + C – G – A) / (8(G + I – A – C))            (33) 

 

      y2c = (I + A – C – G)(G + I – A – C) / (8(I + C – A – G))            (34) 

 

Future applications of four-point interpolation equations cannot be foreseen so 

diversity is desirable. For example, one form of an interpolation equation might be 

superior to another form when the equations are differentiated or integrated. The 

advantage of alternative forms of equations is suggested by Eqs. (28)–(31).  

 

Equations (7)–(10) illustrate four equations for estimating the degree of a four-point, 

polynomial-type curve. One of those equations could be useful for estimating the 

degree of a polynomial interpolation equation for a four-point rectangle provided the 

four data are positive numbers and A<C<G<I as in Fig. 1. Methods designed for 

curves are not necessarily applicable to rectangles so this application remains to be 

examined and evaluated. However, unforeseen applications of mathematical methods 

often deserve to be noticed. This is particularly true in laboratory work. Some early 

methods for are summarized in [4,5].    

 

A simplified form of the expression for the center point (cpt) of a four-point 

rectangle appears as Eq. (4) in [6]. See Eq. (35). That ratio represents an easier form 

of the first term of Eq. (7) of [1]. The abbreviation ‘cpt’ represents ‘center point’ of 

four-point rectangle such as in Fig. 1.  

 

 cpt = ((C + G)(I – A)2 – (I + A)(C – G)2) / (2((I – A)2 – (C – G)2))           (35) 

 

 

References 
 

[1] G. L. Silver, Operational equations for data in rectangular array, Computational 

Statistics & Data Analysis, 28 (1998), 211-215.  

https://doi.org/10.1016/s0167-9473(98)00029-2 

 



 

294                                                                                                                G. L. Silver 

 

 

[2] G. L. Silver, Analysis of three-dimensional grids: the eight-point cube, Applied 

Mathematics and Computation, 153 (2004), 467-473. (See Fig. 1 and Eq. (10)) 

https://doi.org/10.1016/s0096-3003(03)00647-7 

 

[3] G. L. Silver, Exponential and polynomial equations for the four-point rectangle, 

Applied Mathematical Sciences, 13 (18) (2019), 869-875. (See Eq. (10))  

https://doi.org/10.12988/ams.2019.97105 

 

[4] G. L. Silver, Deriving operational equations, Applied Mathematical Sciences, 2 

(9) (2008), 397-406. (See Eq. (6)) 

 

[5] G. L. Silver, Operational method of data treatment, Journal of Computational 

Chemistry, 6 (3) (1985), 229-236. https://doi.org/10.1002/jcc.540060310 

 

[6] G. L. Silver, Latin squares, central tendencies, and cubes, Quality Engineering, 9 

(1) (1996–1997), 129-133. (See Eq. (4). (Equations (4), (5) and (6) are center-point 

estimators for four, six, and eight positive numbers arranged in geometric designs. 

Such designs are numbers sorted by increasing magnitude.)  

https://doi.org/10.1080/08982119608919024 

 

[7] G. L. Silver, Exponential equations for the four-point rectangle, Applied 

Mathematical Sciences, 15 (5) (2021), 217-224.  

https://doi.org/10.12988/ams.2021.914480 

 

 

Received: June 27, 2022; Published: July 22, 2022 

 

 

 

 

  

 


