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Abstract
In this paper, a class of p-Laplacian type fractional four-point bound-
ary value problem is studied. Based on the monotone iterative method,
we obtained the existence of positive solutions of the boundary value
problem. An example is given to show the validity of our main theorem.
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1 Introduction

In recent years, the boundary value problem of fractional differential equa-
tion are widely used in science and engineering fields[1-4]. There are abundant
papers on fractional boundary value problem with different types of boundary
conditions[5-8]. On the other hand, in order to study the one-dimensional vari-
able turbulence of gas through porous media, the nonlinear diffusion equation
was obtained and abstracted as p-Laplacian equation[9]. Many important re-
sults related to the boundary value problem of fractional differential equations
with p-Laplacian operator have been obtained[10-13].
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In this paper, we consider the following fractional differential equations:

Dy (@, (CDy, u(t))) = f(t, ult), °Dy, u(t)),
u(0) +u'(0) = 0,,(“Dg u(0)) + ;,(“Dg,u(0)) = 0, (1.1)
u(1) = ryu(€), &,(“Dy,u(1)) = ra®,(°Dy,u(n)),

where 1 < ,3<2,0<~v<1,0<mr, m & n<1l ©Dg,, CDg+, “Dg,
are the Caputo fractional derivative. @, is the p-Laplacian operator such that
D,(s) = [s[P7%s, p > 1 and @, (s) = @y(s), ; + ¢ =1. f:[0,]]xR* > Risa
given continuous function.

The purpose of this paper is to study the existence of positive solutions of
boundary value problem (1.1) by monotone iterative method.

2 Preliminaries

Let £ = {u:u € C[0,1],°Dgj,u € C[0,1]} be a Banach Space with the
norm [Jull, = ||ulle + ||“Dg, | oos Where || - || is the maximum norm. Set the
cone PC Eby P={u€E |u(t)>0, °Dj,u(t) >0, te|0,1]}.

Definition 2.1. (/1]) The Riemann-Liouville fractional integral of order a > 0
of a function y : [0,00) — R is defined as follows

1 -
T@)/o (t—s)*y(s)ds, t >0,

provided the right side is point-wise defined on (0, 00).

[§+y(t) =

Definition 2.2. (/1]) The Caputo derivative of fractional order o > 0 for a
function y : [0,00) — R is defined as follows

o 1 Cy(s)
C -
Dy, y(t) T —a) /0 = 5)or ds, t >0, n [—al,

where [a] denotes the integral part of the real number c.

Lemma 2.3. ([1]) For a > 0. Assume that y,“Dg,y(t) € L[0,1]. Then
19, (ODG, y)(1) = y(t) +ert® et 24 eyt N, ¢ €R, i =0,1,2,..., N,

where N 1is the smallest integer greater than or equal to .

Lemma 2.4. (/1]) For y € L0, 1],
(i) if p> 0 >0, then DY I y(t) = B2y(t), DI, y(t) = y(t):

4) % P 40— (o) ,o—
(“) pr >0,0>0, then CD0+t 1 F(U( ))t p—1
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Lemma 2.5. The boundary value problem (1.1) has an unique solution:

u(t) :/01 G(t,s) (/ H(s,7)f(,u(r), "Dy, u(r ))dT)ds,

where

o721 — 1) (1 — 8)* L 4 7897 2(1 = &) (t — 5)* L — @ 2(1 — ) (€ — 5)*7!
1 0<s<t<1, s<¢,
G(t,s) = 1 21 —t)(1 =) L4211 -t —5)* L 0<s <t <1, s>,
7 2(1—t)(1 —s)2 L =@ 2(1 =) (€ —s5)*7H, 0<t<s <1, s<E,
21 —-t)(1 -5, 0<t<s<1, s>¢,

)

P21 - )1 =) L+ 2(1 —n)(t — 5)P 7L —rotP2(1 — t)(n — 5)P~1

0<s<t<1, s<m,

H(t,s) = B P21 —1)(1—8)P L 4P 2(1 —n)(t —5)P~1, 0<s <t <1, s>,
P21 —1)(1—8)P L —rt? 2 (1 —t)(n—5)P71, 0<t<s<1, s<n,
P21 —-t)(1—-s)L, 0<t<s<1, s>1,

A=n(@)* (1 =€), B=rI(B)n (1 —n).

Proof. Set y = ®,“Dg. u(t), then “Dg, u(t) = ®,(y(t)).
Due to Lemma 2.3, we have

)

u(t) = —— /0 (t —8)* 1D, (y(s))ds + crt* ! + ot 2, (2.1)

u'(t) = I‘(al— 0 /0 (t — 5)* 2D, (y(s))ds + c1t* 2.

From the boundary condition u(0) + /(0) = 0, u(1) = ru(§), we derive

Py fy (€= 5)2 7 D(y(s))ds — [ (1 — 5)* 1@, (y(s))ds

“- F(C()éa 2(1 - 5) 7 (22)
I 97 Ry (y()ds — r J5 (€~ ) @ (y(s))ds
: ()21 - ¢ |
Thus, by (2.1) and (2.2), we can get
t a—2(1 _ 1
u(t) = ﬁ/o (t — )%, (y(s))ds + rlréa)&g:(f)_ 5)/0 (1 )21, (y(s))ds

__ -y ‘ —s)o ! s))ds
F(Q)§a72(17§)‘/0 (5 ) (I)Q(y( ))d

1
= /0 G(t, s)Pq(y(s))ds. (2.3)
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At the same way, we have

y(t) = 1) / (t — )51 f(s, u(s), °DY u(s))ds

T(3)

B—2 (1—
mrt i f_ )/ (1= )51 £(s, u(s), ° Dy, u(s))ds
B—2 (1—
S / P71 S5, u(s), DY us))ds
/ H(t,5)f (s, u(s), °Dy, u(s))ds = ®,(CDL, u(t)). (2.4)

Using of (2.3) and (2.4), the problem (1.1) has an unique solution:

/ G(t, ) (/ H(s,7)f(r,u(), °DL u(r ))d7'>ds.

The proof is complete. O

Lemma 2.6. The functions G(t,s) and H(t,s) satisfies:
(i) Glt.s) > 0, H(t,5) > 0, fort, s € [0, 1]

s 2(1—s)2—1 2(1—s)#1
(i) fort, s € [0,1], we have G(t,s) < %, H(t,s) < %.

Proof. 1t’s obvious that A >0, B> 0. For 0 <t <s <1, s <, we have

AG(t,s) =t*2(1 —t)(1 — 8)* 1 —rt* (1 — ) (€ — 5)* 7!
> (1= 1)1 = )" =t (1= 1)1 - 8)*
> 0.

For0 <s<t<1, s>¢&, we get

AG(t,s) =t (1= t)(1 — 8)* " + & (1= &)t — 5)* !
<111 —9)" 1 - (L —5)*
<2(1-— 3)0"1.

Hence, 0 < G(t,s) < 2(1 ) fort, se0,1].
Similarly, we can get 0 < H(t, s) < 2(1; fort, se€l0,1]. O

3 The main existence result

In this section, we consider the existence of positive solutions for problem (1.1).
Before proving the main result, we introduce the following hypothesis.
Assume there exists positive constants A, Ao such that:

_ aA(BB)I ' Da=y+1)(1-€)
(H1) max f(t, A1, A2) < Bp(AM), where M = g, = =g raAl-g e A=)’
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A=A+ Ag;
H2) f(t,@l,wl) < f(t,QQ,OJg), for 0 < 91 < 92 < )\1, 0 <L w1 < wy < )\2,
€ [0, 1];
H3) f(t,0,0) > 0, for t € [0, 1].
Define operator T : P — P as follow:

(
t
(

Tu(t) = /0 1 G(t,s)CIDq< /0 H(s ) f(T,u(T),CDg+u(T))dT)ds. (3.1)

Lemma 3.1. T': P — P is completely continuous.

Proof. For any u € P, by the continuity of f, G(t,s) and H(t,s), we have
T : P — P and T is continuous. Let 2 C P be bounded, which is to say exists
K > 0 such that ||ul|, < K, for all u € 2. Set L = max f(t,u, "Dy, u(t)) + 1.

u€e

From (2.1), (3.1) and Lemma 2.4, then, for v € Q, t € [0, 1], we have

Tu(t) = /01 G(t, s)®, ( /01 H(s,7)f(,u(r), CD3+U(T))dT) ds

Lo(r—s)ety o —r)ft N\
<
< /O 1 (/0 e LdT) ds

2¢r49-1
~ QA(BB)T T

< 00,

“Dyy (Tu(t)) = “Dg, I8, (Pq(y(t))) + 1Dyt = 1877 (R4(y(1)) + F(I;(O_‘)w a=y-1
—71 t —g)e 1 1 s, ) F(mu(r), ° D) u(r))dr | ds
|y [a- ot ([ 5. D atyar )a

— e 1 —g)o ! 1 s, ) F(mu(r), °D) L u(r))dr | ds
g [, 00w [ H ). oD urar )
toc—'y—l

* D(a —7)e—2(1 —¢€) /06(5 - S)a_lq)q(/ol H(s,7)f(7, u(r), CDg+u(T))dT> ds

= ﬁ /ot(t —s) (/01 WLdr)q_lds

=1 ¢ o [r2(1—1)Bt >q‘1
—5)¢ ——Ldt ds
tramyeasg ), €0 ()
(2L)q71ta7'y (QL)qfltaf'yflé-Z

(BB T(a—7+1)  a(BB)T(a—)(1-¢)

< Q.

uniformly bounded.

Hence, T'(Q) is
,0<t; <ty <1, we have

For v e P

[Tu(t) — Tu(te)| = ‘I‘(la) /Ot1 (t1 — s)a_1<I>q</01 H(S,T)f(T,’LL(T),CDg+u(T))dT> ds
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1721 = t) 1 e N v
+7"1T(04)50“2(1—§)/o (1=2) cpq(/o H(s,7)f(7,u(r), " Doju(r))d >d

12 (1 — t)

T T 2(1-9) /0 £<£ - s)“‘lqu( /O H (sm)f(nu(T),CD3+u<T))dT> ds

_ ﬁ /0t2(t2 _ s)“‘lqu(/ol H(s,f)f(f,u(T),CDg+u(T))dT> ds
_ rlrt(i)z(al;(?) 5 /0 e s)a—lcpq( /O (s ) f(T,u(T),CDg+u(T))dT) ds

t572(1 — to)

b b [ ar=ran ([ Hesm) ), DLatrar )as

M " _Safl s t2 _Safl_ —Sa71 s
= T(a)(BLy! / (b =8)"ds + / (1= )27 = (12— )]

o a—2  joa—2 1 . a—2  ja—2 13
_(1 tl)(tl to )/ (1—s)a*1ds+(1 tl)(tl to )/ (g_s)aflds

r1§272(1 —§) 0 §a72(1-¢) 0
_ (28)7" {(ta gy A—t)F 2 —t572) (=t * = t§‘2)€2]
T(a+1)(BL)s-t |7 2 ri&*=2(1-§) (1-¢)
=g,
“Dy, (Tu(t1)) — Dy, (Tultz))|
—71 " — gyt ' s, 7) f(r,u(r), ° Dy u(r))dr ) ds
| [ o ([ ) a0, Dty
— t(lx_ﬂ/_l ' —g)o ! 1 s, 7) f(r,u(7), °Dy  u())dr ) ds
S e g 00 (] et Dl
tclx_’y_l : _ a1 ! CY
" F(a—v)io‘*z(l—f)/o (=) (I)q(/o His,n){nuln) D°+u(7))d7>ds
- ﬁ /O Q(tz —s)"‘“<1>q< /0 H(s,T) f(r,u(r),CDg+u(r))dT>ds
tgiyil ' —g) ! 1 s, 7) f(r,u(), °DY  u(r))dr ) ds
b e L 09w [ #0160 ur)ir )a
a—y—1 13 1
- r(a—»tf)ga—2(1_g)/o (f—s)a1®q</0 H(s,T)f(T,u(T),CDgw(T))dT)ds
(L)t

" —§)*¥ g " —g)er—1 _ gy 14s
>~ F(Oé _'Y)(BB)q_l /t2 (tl ) d +/0 [(tl ) (t2 ) ]d

ta—’y—l _ ta—’y—l 1 ta—'y—l _ ta—ry_l 13
- b [ geiase B b [
0 0

r1€e=2(1-¢) co2(1—¢)
I ey BT T (T e
Tla—@my |0 ) ey T a9

=E.

Thus, T'(€?) is equicontinuous. We have T : P — P is completely continuous
by Arzela-Ascoli theorem. O
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Theorem 3.2. Assume there exists positive constants A1, Ay such that (H1),
(H2), (H3) hold, then problem (1.1) has two positive solutions u* and v*.

Proof. Set Py = {u € P : ||ull, < Awhere X = A\ + Ao, |[ufjoc <
A, 9Dyt < Ao}

We first prove TPy C Py,. Yu € Py, we have 0 < u(t) < JJulleo <
A, 0 < “Diiu(t) < |°Dgiulle < A2. Using (Hi) and (Hy), then 0 <
f(tu(t), “Do,u(t)) < f(t, M, A2) < @,(AM). For any u € U, we know that
ITully = 1Tull oo + | “Do ()| oo

= max, /o G(t, s) </ H(s,7)f(r,u(r D0+u( ))dT)dS
Jfnax ﬁ/o (t—s)* 710 (/ H(s,7)f(1,u(r ),cDg+u(T))dT)ds
ot ' a—1 cnY
_rlf(a—v)ﬁa’2(1—§)/o (1—29) @q</0 H(s,7)f(r,u(r), D0+u(7'))dr>ds
ta—’y—l

)ga 2(1_5) /06(6—s)“—1<1>q</01H(sm)f(T,u(T)PDgw(T))dT)ds
< )\M/ (/01 201 _BT)B_ldrY_lds
I / oo ([ )

AMte—71 ¢ Lo(1—r)p-t N7
+ — / (€ - s)a—1</ EiC d7> ds
Lla=7)E72(1 =€) Jo 0 B
29\ M 2014 \M 2014012\

T GABB)1 | (BB T(a—~1+1) | (BB T(a—1(1 -8
_ 22T (a v+ 1)(1— &) +ad(l &) + £ Ao — )
= aAPB)T(a -+ D)(1—€)

=\

AM

Therefore, Tu € Py. So that, TPy, C P,.
Set ug(t) = A, 0 <t <1, then ||u|, = A and uy € Py. Let u,41 = Tu, =
T 'y, n=0,1,2,--- . Since TPy C Py, we have u,, € P\,n=20,1,2,--- .
From (H;) and (HQ ), for t € [0, 1], one has

wi(t) = (Tug) (¢ /Gts (/ H(s, 7) (7 uo(r), CDnguo(T))dT)ds

g/olz( v (/0 1_BT ()\M)d) ds

M
= GA(BB)y
<A

= UQ(t),
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Unt1(t) = (Tuy,)(t) = /01 G(t, 3)q>q</01 H(s,7)f(r, un(T),CDg+un(7'))d7’) ds

< /0 Gt 9)a, ( /0 H(s) (ot (7). CDg+un_1(T))dT) ds

= u,(t).

Hence, we can obtain u,11 < u,,0<t<1,n=0,1,2,---.

Set vop = 0,0 < ¢ < 1, then ||v], = 0 and vy € Py. Let v,y = T, =
T g, n =0,1,2,--- . Since TP, C Py, we have v,, € P\,n=0,1,2,--- .

Same as above, we can get v,,1 > v,,0<t<1,n=0,1,2,---. Therefore,
we obtain monotone sequences {u,} and {v,}.

According to Lemma 3.1, we can know that {u,}, {v,} have convergent
subsequence {uy, }, {vn, } and exists u*, v* € P, such that u,, — u*, v, — v*.
Thus, there exists u*,v* € P, such that u, — u*,v, — v*, ie lim u, =

n—o0
u*, lim v, = v*. Applying the continuity of T" and u,11 = Tupn, Vyy1 = Ty,
n—oo
we have Tu* = u*, Tv* = v*. From (Hj3), we have u* > 0, v* > 0.
Then boundary value problem (1.1) has two positive solutions. O
4 Examples

We consider the following equation:

3

Dy (¥ (“D. u(t))) = F(t,u(t). “Dg. u(t)).
u(0) +u< ) =0, <1>s<CD3+u<o>> +O(DLu0) =0, (4]
u(1) = Ju(3), ®4(DEu(1)) = 184 (°DE, u(d)),

Njw

~

3
3 CD2 . 3 3 .
where @3 (°Dg, u(t)) = ——22 if °D¢, u(t) # 0, and @3 (°Dg, u(t)) = 0 if

3
\/ 19D u(t)]
3
“Dé, u(t) = 0.

Assume that f(t,0,w) = 15(1+0t+w). By computation, we have A = B ~
0.3134, M =~ 0.27964. Set A\ = Ay = 5, then A = 10. So, f(t,0,w) satisfies
(Hl) max f(t A1, A2) = ggfg:lf(t,&f)) = 11 < ®3(AM) = ©5(0.27964) ~
1.67; o
(H2) f(t,01,w1) < f(t,02,ws), for 0 <0 <6 <5 0<w <wy <5, tel0,1];
(H3) f(t,0,0) =0.01 > 0, for t € [0, 1].

By Theorem 3.2, the problem (4.1) has two positive solutions.
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