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Abstract

Although various forms of the solute transport equations model the Spatio-
temporal distribution of contaminants in soil or groundwater systems using
the corresponding analytical or numerical solutions, the qualitative analysis of
well-posed solution properties of these models is rarely considered. This paper
investigates the existence and uniqueness of classical solutions to an advection-
diffusion reaction equation (ADRE). We derive the findings by applying the
method of variation formulation (VF) in the Sobolev space.
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1 Introduction

Traditionally, when modelling heat and mass transport in soil or groundwater sys-
tems, studies focus on developing numerical and analytical solutions for partial dif-
ferential equations (PDEs) [1, 2]. Unlike the case of ordinary differential equations
(ODEs), as applied to disease models [3, 4], qualitative analysis of the formulated
PDEs to heat and mass transport is rarely considered. Instead, the focus is on
the dimensional homogeneity principle [5] of the models formulated. Yet, for the
cause-and-effect phenomena such as heat transport, the models are often inhomo-
geneous [6, 7]. Recently, Hasan-Zadeh [8] examined the existence and uniqueness of
the weak solution to the time-dependent advection-diffusion equation (ADE) using
advanced components of Sobolev spaces [9], weak solutions and some important in-
tegral inequalities, but for an ODE version of the original PDE. Alzate et al. [10]
described the variational method to qualitatively study the existence, uniqueness
and regularity of the solution to a PDE and applied it to the Poisson’s equation
but on the basis of the conditions of the Lax-Milgram Theorem [11, 12]. However,
following Clason [13], the Banach-Nečas-Babuška Theorem [14, 15], which general-
izes the Lax-Milgram Theorem (see Appendix 4), is particularly well suited for the
study of the global existence of solutions to the parabolic PDEs. In this paper, we
investigate the existence and uniqueness of solutions to the advection-diffusion re-
action equation (ADRE) using the Banach-Nečas-Babuška Theorem in the Sobolev
space. The novelty in this case is not conceptual; rather, it is in the manner we set
up a transport problem to illuminate a relevant topic further while utilising abstract
space analysis and outlining potential futures. The rest of the paper is organized
as follows: in Section 2, we present the investigated PDE and list the mathemati-
cal preliminaries from the abstract space, relevant for the analysis framework. The
result and analysis are presented in Section 3, and in Section 4 the conclusion is
made.

2 Methodology

2.1 The model

A two-dimensional analytical solution to the ADRE of bilateral uniform flow with
first-order decay, absorption, and sink to model the transport of dissolved solute
in a homogeneous and isotropic non-fractured porous medium Ψp was developed
by [16], but not qualitatively evaluated for the existence and uniqueness of solution
properties. To evaluate the solution properties of the model [16]
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where C and T are solute concentration and soil temperature, respectively; Rm is
matrix retardation factor; ζ̄ is thermophoresis parameter; %́3, %́4 and %́5 are first-
order reaction, adsorption and sink coefficients, respectively; φ is soil porosity, θw is
soil water content, and Pe is Peclet number; together with the initial and boundary
conditions

C (z, x, 0) = 0
C (0, x, t) = 1
limx→∞

∂C
∂x

= 0
C (∞, x, t) = 0

 , (2)

an investigation of well-posedness in abstract space was needed. Since (1)–(2) is a
linear parabolic PDE, we can use the method of variational formulation (VF) [10, 17]
or the energy method (EM) [18, 19] to achieve that. But, first, we assume ζ̄ is
negligible, and transform (2) into Dirichlet boundary condition C(z, x, t) = 0 for
x, z ∈ ∂Ψp. Furthermore, let ē1 = φ2 and ē2 = θw/Pe.

Conventionally, studies widely employ the VF because of its simplicity. The EM,
however, has an advantage over the VF since it does not only describe the mecha-
nism for testing the existence of the unique solution but also helps to identify the
type of boundary conditions to use to ensure a unique solution. We employ the VF
method but blend it with the EM technique and term the approach ‘the VF-EM’
technique. To use the VF technique, we transform the given PDE (Eq.1) from its
original domain Ψp into some fixed reference domain Ψ and apply the abstract tech-
niques from functional analysis [20]. With the EM, however, we need to show that
the energy integral

É(t) =
∂

∂t

∫
Ψ

u2, (3)

is a decreasing function for every real-valued function u ∈ L2 (0, T ;V). In the VF
approach, we employ the Banach-Nečas-Babuška Theorem [13, 20], a generalized
Lax-Milgram theorem [12], to show that the model is well posed by investigating
existence of unique, positive, and bounded weak solutions [21]. But, first, we recall
some definitions and facts from functional analysis [22, 23, 24].
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2.2 Preliminaries

Lemma 2.1. Hölders inequality [22]. For p, q ∈ R,
1

p
+

1

q
= 1, and §j, ζj ∈ C,

n∑
j=1

|§jζj| ≤

(
n∑
j=1

|§j|p
) 1

p
(

n∑
j=1

|ζj|q
) 1

q

.

Lemma 2.2. Cuachy-Schwarz inequality [22]. Let §, ζ ∈ L2(Ψ); then,

| (§, ζ) | ≤ ‖§‖L2(Ψ)‖ζ‖L2(Ψ).

Definition 2.3. Let T > 0 be some fixed time and Ψ ⊂ Rn be the given space
domain. Set Q = (0, T ) × Ψ and let u (t, ~x) be a real-valued function of t on Q
defined in a Banach space1V. Suppose V consists of functions dependent on ~x only,
then

u : (0, T )→ V , and t 7→ u(t) ∈ V .

Definition 2.4. Hölder spaces [12, 13].
Let N be the set of non-negative integers. Let Q̄ be an open bounded set in Rn

and let k ∈ N. Then, for k ≥ 0, Ck (0, T ;V) is the set of all V-valued functions on
[0, T ] which are k times continuously differentiable on Q̄ with respect to t. Further,
if djtu is denoted as the jth derivative of u, then the Hölder space2 Ck (0, T ;V) is a
Banach space when equipped with the norm

‖u‖Ck(0,T ;V) =
∑

0≤j≤k

sup
t∈[0,T ]

‖djtu‖V . (4)

Definition 2.5. Lebesgue/Bochner spaces [12, 13]. For 1 ≤ p ≤ ∞, let Lp (0, T ;V)
be defined as the space of all V-valued functions on (0, T ) for which t 7→ ‖u(t)‖V is
a function in Lp (0, T ). Then the Lebesgue space3 Lp (0, T ), with∫ T

0

|u(t)|pVdt <∞,

is a Banach space when equipped with the norm

1A complete normed space, i.e. for u (t, ~x) ∈ V, ‖u‖V = max|ut|, t ∈ (0, T ) whenever V is a
space of continuous functions [24]

2also defined as space of continuous function in [12]
3also called space of integrable functions in [12]
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‖u(t)‖Lp(0,T ;V) =


(∫ T

0
|u(t)|pVdt

) 1
p

if p <∞,

ess supt∈(0,T )|u(t)|V if p =∞.

Moreover, if p = 2 and the space L2 (0, T ) is endowed with an inner product (·, ·),
then Lp (0, T ) is a Hilbert space4 H.

Then, we need to construct a weak formulation of the model using some standard
results and definitions based on the theory of parabolic PDEs in the Sobolev space.

Definition 2.6. Weak derivative [20].
Let V and H be Hilbert spaces5 and let V ⊂ H ⊂ V∗ such that (V ,H,V∗) is

a Hilbert triple. Then u ∈ L2 (0, T ;V) is said to have a weak derivative dtu ∈
L2 (0, T ;V∗) if there exists ω ∈ L2 (0, T ;V∗) such that∫ T

0

ω
′
(t) (u(t), v)H = −

∫ T

0

ω(t)〈u(t), v〉V∗,V ∀ω ∈ D (0, T ) , v ∈ V . (5)

Definition 2.7. Sobolev spaces [12, 13]. Let u ∈ Lp (0, T ;V) have a weak derivative
dtu ∈ Lp (0, T ;V). Then u ∈ Wp

k (0, T ;V), is defined as a Sobolev space of order k,
i.e.,

Wp
1 (0, T ;V) = {u ∈ Lp (0, T ;V) : dtu ∈ Lp (0, T ;V)} .

It is then called a Banach space6 if endowed with the norm

‖u‖Wp
1 (0,T ;V) = ‖u‖Lp(0,T ;V) + ‖dtu‖Lp(0,T ;V∗).

Lemma 2.8. Hilbert space [20]. The space

Wp
1 (0, T ;V ,V∗) =

{
u ∈ L2 (0, T ;V) : dtu ∈ L2 (0, T ;V∗)

}
.

equipped with an inner product,

(u, v)Wp
1 (0,T ;V,V∗)

=

∫ T

0

(u(t), v(t))V +

∫ T

0

(dtu, dtv)V∗ , (6)

is a Hilbert space, H1
0.

4in general, any vector space ~X, equipped with an inner product (·, ·) ~X and the associated norm

‖u‖ ~X = (·, ·)
1
2 is called a Hilbert space if there exists a Cauchy sequence {um} in ~X.

5any vector space ~X, equipped with inner product (·, ·) ~X and associated with norm ‖u‖ ~X =

(·, ·)
1
2 for a Cauchy sequence {um} in ~X [24].

6A complete normed space, i.e. for u (t, ~x) ∈ V, ‖u‖V = max|ut|, t ∈ (0, T ) whenever V is a
space of continuous functions [24]
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Lemma 2.9. Poincaré-Friedrich’s inequality. Let Ψ be an open bounded set in Rn

with sufficiently smooth boundary ∂Ψ . Let u ∈ H1
0(Ψ), then there exists a constant

k∗(Ψ), independent of u, so that∫
Ψ

u2(x)dx ≤ k∗

n∑
i=1

∫
Ψ

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣2dx.
Then

• H1
0(Ψ) =

{
u ∈ L2 (Ψ) : dxu ∈ L2 (Ψ) , u = 0 on ∂Ψ

}
,

• X = H1
0(0, T ) =

{
u ∈ L2 (0, T ;V) : dtu ∈ L2 (0, T ;V∗) , u0 = 0 in X

}
.

Lemma 2.10. Weak-formulation [13] or Transport Theorem [20].
Let (V ,H,V∗) be a Hilbert triple such that for every u, v ∈ W (V ,V∗), the map

t 7→ (t;u(t), v(t))H ,

is absolutely continuous on t ∈ (0, T ) and for almost every t ∈ (0, T ),

∫ T

0

〈dtu(t), v(t)〉V∗,Vdt = 〈u(T ), v(T )〉H − 〈u(0), v(0)〉H

−
∫ T

0

{〈dtv(t), u(t)〉V∗,V − a (t;u(t), v(t))} dt. (7)

Using Theorem .1 in Appendix and the above mathematical preliminaries, we estab-
lish that there exists a unique solution of (1)–(2). In compressed form, let (1)–(2)
be

Rm∂tC(~x, t)−ē2∇2C(~x, t)+bi∇C(~x, t)+g̃C(~x, t) = f(~x, t), for (t, ~x) in (0, T )×Ψ,
(8)

C(~x, 0) = 0, (9a)

C(~x, t) = 0, on ∂Ψ, (9b)

where ~x = (x, z), bi = {ē1u, ē1v}, g̃ = (%́3 + %́4), and f = %́5. Let a (t; ·, ·) : V × V →
R bilinear on V × V , g̃ ∈ L∞ (0, T ;V), bi, ē2 ∈ H1

0, and f ∈ L2 (0, T ;V∗) be a con-
tinuous linear function so that C0 ∈ H.
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Then, since “every classical solution of (8)–(9) is a weak solution of (1)–(2)”, we
show that (8)–(9) has a unique weak solution c ∈ W (V ,V∗) so that

〈dtc(t), v(t)〉V∗,V + a (t; c(t), v(t)) = 〈f(t), v(t)〉V∗,V ,∀v ∈ V ,∀t ∈ (0, T ) ,

c0(~x) = 0,

 (10)

where v’s are test functions whose collection generates a Banach space. Eventually
(1)–(2) has a unique solution.

3 Result Analysis

Proposition 3.1. Let c ∈ W (V ,V∗) be a unique weak solution of (8)–(9). If every
property of Theorem .1 is satisfied, then (1)–(2) has a unique classical solution.

Proof. To show that there exists a weak solution that satisfies (8)–(9), we first recast
(10) into a Banach space. Thus, we seek the solution

c ∈ X such that a(c, v) = L(v), ∀v ∈ Y

where the bi-linear function

a(c, v) =

∫ T

t=0

{〈dtc(t), v(t)〉V∗,V + a (t; c(t), v(t))} dt, (11)

L(v) = 〈f, v〉Y∗,Y =

∫ T

0

〈f(t), v(t)〉V∗,Vdt, (12)

a (c, v) : X × Y → R, X = {c ∈ W (V ,V∗) : c(0) = 0}, Y = L2 (0, T ;V), and
Y∗ = L2 (0, T ;V∗).

First, we show that Eq. (8) satisfies property (i) of the Theorem (.1). Re-arranging
Eq. (8), we have

a (t; c(t), v(t)) = −
∑
i,j

∫ T

0

∂

∂t

(
ai,j

∂c(t)

∂t

)
v(t)dt+

∑
i

∫ T

0

(
bi
∂c(t)

∂t

)
v(t)dt

+

∫ T

0

g̃c(t)v(t)dt. (13)

Since the functions to the RHS of Eq. (13) and their derivatives are continuous
and integrable over L2 (0, T ;V), then by definitions (2.4) and (2.5), the mapping
t 7→ a (t; c(t), v(t)) is Lebesgue measurable for each t ∈ [0, T ].
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Then, we show that boundedness property (ii) of Theorem (.1) is satisfied. In-
tegrating the first integral on the RHS of Eq. (13) by parts, and using the initial
condition c(0) = 0 (see 9a), yields

a (t; ·, ·) =
∑
i,j

∫ T

0

ai,j
∂c(t)

∂t

∂v(t)

∂t
dt+

∑
i

∫ T

0

(
bi
∂c(t)

∂t

)
v(t)dt+

∫ T

0

g̃c(t)v(t)dt.

(14)

Taking the modulus of (14), we obtain

|a (t; c(t), v(t))| ≤ m̄

{∑∣∣∣∣∫ T

0

∂c(t)

∂t

∂v(t)

∂t
dt

∣∣∣∣+
∑∣∣∣∣∫ T

0

∂c(t)

∂t
v(t)dt

∣∣∣∣+

∣∣∣∣∫ T

0
c(t)v(t)dt

∣∣∣∣} ,

(15)

where m̄ = max
{

maxi,j≤n;t∈[0,T ]|ai,j(t)|,maxi≤n;t∈[0,T ]|bi(t)|,maxt∈[0,T ]|g̃(t)|
}

. Ap-
plying the Hölders inequality (lemma 2.1), for p = 2, into (15) gives

|a (t; c(t), v(t))| ≤ m̄

∑
(∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt
) 1

2
(∫ T

0

∣∣∣∣∂v(t)

∂t

∣∣∣∣2dt
) 1

2


+ m̄

∑
(∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt
) 1

2 (∫ T

0
|v(t)|2dt

) 1
2

+

(∫ T

0
|c(t)|2dt

) 1
2
(∫ T

0
|v(t)|2dt

) 1
2

 .

(16)

Algebraically, (16) can be expressed as

|a (t; c(t), v(t))| ≤ m̄ {x̃ỹ + x̃c̃+ ṽc̃+ ṽỹ} ,

where the term ṽỹ = 0. Since it can be shown, using the Poincaré-Friedrich’s
inequality (lemma 2.9), that

ṽỹ =

(∫ T

0

|c(t)|2dt
) 1

2 ∑(∫ T

0

∣∣∣∣∂v(t)

∂t

∣∣∣∣dt)
1
2

≥ ‖c(t)‖√
k∗

(∫ T

0

|v(t)|2dt
) 1

2

= 0, (17)

when c(t) = 0 on ∂Ψ (see 9b), substituting (17) into (16) leads to
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|a (t; c(t), v(t))| ≤ m̄


(∫ T

0

|c(t)|2dt
) 1

2

+
∑(∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt
) 1

2

×
(∫ T

0

|v(t)|2dt
) 1

2

+
∑(∫ T

0

∣∣∣∣∂v(t)

∂t

∣∣∣∣2dt
) 1

2

 . (18)

By majorization [25], it can be shown that

w̃
1
2 +

n∑
j=1

(§j)
1
2 ≤
√

2

(
w̃ +

n∑
j=1

§j

) 1
2

,∀w̃ ∈ R, §j ∈ Rn,

so that the RHS of (18) simplifies to

≤ 2m̄

{∫ T

0
|c(t)|2dt +

∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt
} 1

2

×

{∫ T

0
|v(t)|2dt +

∑∫ T

0

∣∣∣∣∂v(t)

∂t

∣∣∣∣2dt
} 1

2

.

(19)

Employing the Cuachy-Schwarz inequality (lemma 2.2) under the normed Banach
space for p = 2 onto (19), and letting α0 = 2m̄, the property (ii) of Theorem (.1)

|a (t; c(t), v(t))| ≤ α0‖c(t)‖V‖v(t)‖V , (20)

is satisfied.

To establish positive definiteness property (iii) of Theorem (.1), we use the bi-
linear form

a (t; ·, ·) =
∑
i,j

∫ T

0

ai,j
∂c(t)

∂t

∂c(t)

∂t
dt+

∑
i

∫ T

0

(
bi
∂c(t)

∂t

)
c(t)dt+

∫ T

0

g̃c(t)c(t)dt.

Using the uniform ellipticity condition [12],∑
i,j=1

ai,j(x)ξiξj ≥ d̃
∑
i=1

ξ2i , ∀ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn, x ∈ Ψ̄

where d̃ > 0 is constant, independent of x and ξ, we obtain
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a (t; c(t), c(t)) ≥ d̃
∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt+∑
i

∫ T

0

(
bi
∂c(t)

∂t

)
c(t)dt+

∫ T

0

g̃c(t)2dt. (21)

Since, by the chain rule, we have∫ T

0

∂c(t)

∂t
c(t)dt =

∫ T

0

1

2

∂

∂t
c(t)2dt,

then applying integration by parts to the above expression and substituting the
result into (21) yields

a (t; c(t), c(t)) ≥ d̃
∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt+

∫ T

0

{
g̃ − 1

2

∑
i

∂bi(t)

∂t

}
|c(t)|2dt. (22)

Because bi and g̃ are non-negative advection, and reaction and adsorption coeffi-
cients, respectively

g̃ − 1

2

∑
i

∂bi(t)

∂t
≥ 0,∀i = 1, 2, · · · , n; ∀~x.

Therefore,

a (t; c(t), c(t)) ≥ d̃
∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt. (23)

But, by the Poincaré-Friedrich’s inequality (lemma 2.9),

∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt ≥ 1

k∗

∫ T

0

|c(t)|2dt,

so that

k∗a (t; c(t), c(t)) ≥ d̃

∫ T

0

|c(t)|2dt. (24)

Summing (23) and (24) yields

a (t; c(t), c(t)) ≥ d̃

1 + k∗

{∫ T

0

|c(t)|2dt+
∑∫ T

0

∣∣∣∣∂c(t)∂t

∣∣∣∣2dt
}
, (25)

so that
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a (t; c(t), c(t)) ≥ α1‖c(t)‖2V , (26)

where α1 =
d̃

1 + k∗
. Therefore, the property (iii) of Theorem (.1) is satisfied.

Then, to show uniqueness, by the Lax-Milgram Theorem (.2), (26) implies that

α1‖c(t)‖2V ≤ a (t; c(t), c(t)) = L(c(t)) = 〈f(t), c(t)〉 ∀f(t) ∈ X , (27)

whenever V =W (V ,V∗).

Since L(c(t)) is linear functional on X , applying the Reisz Representation Theo-
rem7 (RRT) [22], we have

〈f(t), c(t)〉 ≤ |〈f(t), c(t)〉| ≤ ‖f(t)‖L2(0,T ;V∗)‖c(t)‖L2(0,T ;V),

so that

‖c(t)‖W(V,V∗) ≤
1

α1

‖f(t)‖L2(0,T ;V∗) =
1

α1

‖f(t)‖Y∗ . (28)

Moreover, since the variable c ∈ L2 (0, T ;V), we can use Lemma (2.10) to show that

−2

∫ T

0

1

2

∂

∂t
‖c(t)‖2dt =

∫ T

0

a (t; c(t), c(t)) dt− ‖c(T )‖2. (29)

Hence, substituting the result (26) into Eq. (29) results in

− ∂

∂t

∫ T

0

‖c(t)‖2dt ≥ α1

∫ T

0

‖c(t)‖2dt− ‖c(T )‖2 ≥ 0, (30)

so that

∂

∂t

∫ T

0

‖c(t)‖2dt ≤ 0. (31)

Remarks

• Since the result (31) is a condition (3) set by the Energy method (EM), we
have used the VF-EM approach to show that (8) is well posed.

• Results (20), (26), and (28) respectively, mean (8) has a non-negative, bounded,
and unique solution.

7any bounded linear function on a Hilbert space H can be represented as an inner product with
some unique vector in H
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4 Conclusions

In this paper, we have investigated the existence and uniqueness of a solution to the
advection-diffusion reaction equation in a Sobolev space for the problem of mod-
elling transport of contaminants in porous medium. The main result is proved by
using the Banach-Nečas-Babuška theorem based on identifying weak solutions in
the Sobolev space. By using the same methodology and concepts as deliberated
in this manuscript, we can extend the results to partial differential equations of
heat transport transport equations. In future, will explore the use of the Galerkin’s
method to prove the existence of solutions of coupled PDEs, and approximate their
solutions [26].
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Appendix

Theorem .1. Banach-Nečas-Babuška Theorem [14, 15]
Assume that the bilinear form a (t; ·, ·) : V × V → R satisfies the following prop-

erties;

(i) The mapping t 7→ a (t; ·, ·) is measurable for all u, v ∈ V,

(ii) There exists α0 > 0 such that |a (t;u, v) | ≤ α0‖u‖V‖v‖V for almost every
t ∈ (0, T ) and all u, v ∈ V,

(iii) There exists α1 > 0 such that a (t;u, u) ≥ α1‖u‖2V for almost every t ∈ (0, T )
and all u ∈ V.

Then, a given parabolic equation has a unique solution u ∈ Wp
1 (V ,V∗) satisfying

‖u‖Wp
1 (V,V∗) ≤

1

α1

‖f‖Y∗ .

Theorem .2. Lax-Milgram Theorem [11, 12]
Suppose that V is a real Hilbert space equipped with norm ‖ · ‖V . Let a (t; ·, ·) :

V × V → R be a bilinear form on V × V and L (·) be a linear form on V such that;
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(i) there exists c0 > 0 such that a (v, v) ≥ c0‖v‖2V for all v ∈ V,

(ii) there exists c1 > 0 such that |a (v, w) | ≤ c0‖v‖V‖w‖V for all v, w ∈ V,

(iii) there exists c2 > 0 such that |L (v) | ≤ c2‖v‖V for all v ∈ V.

Then, there exists a unique u ∈ V satisfying

‖u‖H1(Ψ) ≤
1

c0
‖f‖L2(Ψ)

such that
a (u, v) = L (v)∀v ∈ V .
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