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Abstract

In this paper, we discuss the origin moment of the q-Gaussian pro-
cess, which is used to describe anomalous correlated diffusion. The
origin moment are obtained using Itô formula and the definition of the
q-gaussian process. Results of q-Gaussian process are compared with
the standard Brownian motion.
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1 Introduction

In 1998, C.Tsallis [1], the famous statistician, generalized the classical sta-
tistical mechanics and proposed the concept of non-extensive statistical me-
chanics from the perspective of generalized entropy, and discovered a series
of non-extensive probability distribution families, shortened as q-distribution.
Some scholars maximize the Tsallis derived distribution, that is D.A. Stariolo
(1996) [2] study the nonlinear Fokker-Planck stochastic differential equation
corresponding to drift term is 0 derived from the non-extensive distribution,
called the q-Gaussian distribution.

Previously, Tsallis statistical theory was mainly devoted to the field of sta-
tistical physics, and it was recognized that it could make the basic concepts of
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thermodynamic statistical physics more generalized. Later, non-extended sta-
tistical mechanics is also widely used in financial markets. L. Borland (2007)
[3] use q-Gaussian distribution to describe the distribution characteristics of
stock price fluctuations, and many scholars study the properties of multiple
q-Gaussian distributions. F.Michael, M.D. Johnson (2003) [4] study the maxi-
mum Tsallis entropy distribution under the condition of average distribution of
maximize Tsallis entropy, deduced the q-Gaussian distribution density func-
tion. C. Vignat, A. Plastino (2007) [5] studied the problem of estimating
the appropriate value of parameter q in q-Gaussian distribution. L. Borland
(1998) [6] from the perspective of microscopic dynamics, discussed the pro-
cess of martensite and the long-range correlation in this paper, Liu Limin
et al.(2020) [7] proved the non-Markov property of q-Gaussian processes by
numerical simulation.

2 Main Results

We assume as given a complete probability space (Ω,F , {Ft}t≥0, P ) satis-
fying the usual conditions. Let W be a standard Brownian motion and the
(Ft)t≥0 is the underlying filtration for the Brownian motion W .

Definition 2.1. The process Ω = (Ω(t))t≥0 is called a q-gaussian process if
Ω(t) satisfy the following stochastic differential equation{

dΩ(t) = p(Ω(t), t)
1−q
2 dW (t),

Ω(0) = 0,
(1)

where

p(x, t) =
1

Zq(t)
[1− β(t)(1− q)x2]

1
1−q ,

β(t) = c
1−q
3−q [(2− q)(3− q)t]

−2
3−q ,

Zq(t) = [(2− q)(3− q)ct]
1

3−q ,

c =
π

q − 1

Γ2( 1
q−1
− 1

2
)

Γ2( 1
q−1

)
,

and Γ(.)denote as a Gamma function.

Remark: q is a parameter reflecting the degree of diffusion. When q = 1,
the system is normal diffusive and the process is Brownian motion. When
q > 1, the system is superdiffusive and when q < 1, the system is subdiffusive.

The main results of this paper are given by the next theorem.
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Theorem 2.2. Let Ω(t) be a q-gaussian process. Then

E(Ω2n(t)) =
(2n− 1)!!

(5− 3q)× ...× ((2n+ 3)− (2n+ 1)q)βn(t)
, n = 1, 2, ... (2)

and
E(Ω2n−1(t)) = 0, n = 1, 2, ... (3)

Proof. First, applying the Itô formula, we have

dΩ2(t) = 2Ω(t)dΩ(t) + p1−q(Ω(t), t)dt

= 2Ω(t)p
1−q
2 (Ω(t), t)dW (t) + Zq(t)

q−1[1− β(t)(1− q)Ω2]dt,

Taking expectations we have

dEΩ2(t) = Zq(t)
q−1[1− β(t)(1− q)E(Ω2(t))]dt.

Therefore

EΩ2(t) = exp

(
−
∫

(Zq(t))
q−1β(t)(1− q)dt

)
×
{
C +

∫
[(Zq(t))

q−1 exp{
∫

(Zq(t))
q−1β(t)(1− q)}dt]dt

}
.

Since ∫
(Zq(t))

q−1β(t)(1− q)dt =
(1− q)

(2− q)(3− q)
ln t, (4)

we conclude that

EΩ2(t) = t−
(1−q)

(2−q)(3−q) ×
{
C +

∫
[(2− q)(3− q)ct]−

1−q
3−q t

(1−q)
(2−q)(3−q)dt

}
= t−

(1−q)
(2−q)(3−q) ×

{
C + [(2− q)(3− q)c]−

1−q
3−q

1
2

3−q
+ (1−q)

(2−q)(3−q)

t
2

3−q
+

(1−q)
(2−q)(3−q)

}

= Ct−
(1−q)

(2−q)(3−q) + t
2

3−q [(2− q)(3− q)]
2

3−q c
−(1−q)
3−q

1

5− 3q

= Ct−
(1−q)

(2−q)(3−q) +
1

β(t)(5− 3q)
.

Substituted EΩ2(0) = 0 yields

EΩ2(t) =
1

β(t)(5− 3q)
.

Next, using the Itô formula, we have

dΩ4(t) = 4Ω(t)3p
1−q
2 (Ω(t), t)dW (t) + 6Ω2(t)(Zq(t))

q−1[1− β(t)(1− q)Ω2(t)]dt,
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Taking expectations we have

dEΩ4(t) = 6EΩ2(t)(Zq(t))
q−1dt− 6(Zq(t))

q−1β(t)(1− q)EΩ4(t)dt

=
6

β(t)(5− 3q)
(Zq(t))

q−1dt− 6(Zq(t))
q−1β(t)(1− q)EΩ4(t)dt,

Combing the same argument and the integral of (4) yields

E(Ω4(t)) =

(
exp

∫
−6(Zq(t))

q−1β(t)(1− q)dt
)

{∫
6

1

β(t)(5− 3q)
(Zq(t))

q−1

(
exp

∫
6(Zq(t))

q−1β(t)(1− q)dt
)
dt

}
.

= t−
6(1−q)

(2−q)(3−q)

∫
6

(
1

β(t)(5− 3q)
(Zq(t))

q−1t
6(1−q)

(2−q)(3−q)

)
dt,

=
6

5− 3q
t−

6(1−q)
(2−q)(3−q)

∫ (
c

−2(1−q)
3−q [(2− q)(3− q)]

1−q
3−q t

2
3−q

+
6(1−q)

(2−q)(3−q)

)
dt,

=
6

5− 3q
c

−2(1−q)
3−q [(2− q)(3− q)]

4
3−q

1

(14− 10q)
t

4
3−q ,

=
3

(5− 3q)(7− 5q)β(t)2
.

A similar calculation can be obtained

EΩ6(t) =
3

(5− 3q)(7− 5q)(9− 7q)β(t)3
.

Therefore

EΩ2n(t) =
(2n− 1)!!

(5− 3q)× ...× ((2n+ 3)− (2n+ 1)q)βn(t)
, n = 1, 2, ...

Second, since Ω(t) is a martingale, we conclude EΩ(t) = 0 . Therefore

dΩ3(t) = 3Ω(t)2p
1−q
2 (Ω(t), t)dW (t) + 3Ω(t)p1−q(Ω(t), t)dt

= 3Ω(t)2p
1−q
2 (Ω(t), t)dW (t) + 3Ω(t)(Zq(t))

q−1[1− β(t)(1− q)Ω2(t)]dt,

Taking expectations yields

dEΩ3(t) = 3EΩ(t)(Zq(t))
q−1dt− 3(Zq(t))

q−1β(t)(1− q)E(Ω3(t))dt

= −3(Zq(t))
q−1β(t)(1− q)E(Ω3(t)dt
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Thus

EΩ3(t) = C exp

(∫ (
−3(Zq(t))

q−1β(t)(1− q)
)
dt

)
= Ct

3(q−1)
(2−q)(3−q) .

Since Ω(0) = 0, then EΩ3(0) = 0. Therefore

EΩ3(t) = 0.

Using the Itô formula, we have

dΩ5(t) = 5Ω(t)4p
1−q
2 (Ω(t), t)dW (t) + 10Ω3(t)(Zq(t))

q−1[1− β(t)(1− q)Ω2(t)]dt,

Taking expectations yields

dEΩ5(t) = 10EΩ3(t)(Zq(t))
q−1dt− 10(Zq(t))

q−1β(t)(1− q)E(Ω5(t))dt

= −10(Zq(t))
q−1β(t)(1− q)E(Ω3(t)dt

The same argument yields
EΩ5(t) = 0.

Therefore
E(Ω2n−1(t)) = 0, n = 1, 2, ...

Remark: In order to ensure the variance of stochastic process is exist, we
assume that 1 ≤ q < 5

3
. If q = 1, then β(t) = (2t)−1. Thus the origin moment

of the q-gaussian process is given by

E(Ω2n(t)) = (2n− 1)!!tn, E(Ω2n−1(t)) = 0, n = 1, 2, ...,

which is the same results with the standard Brownian motion W (t).
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