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Università degli Studi di Foggia
Dipartimento di Economia, Management e Territorio, Italy

Corresponding author

Domenico Santoro
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Abstract

In this work, we introduce and give some results about directional
derivatives in non-Hausdorff Topological Vector Space over general Topo-
logical Division Ring. Through the paper, we use some topological filter
techniques that are needful for the development of the theory because
of the total lack of a metric structure of the spaces, but most of all for
the non-uniqueness of the limits due to the absence of the T2 bond.
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1 Introduction and preliminary definitions
This section gives some preliminary definitions of Topological Vector Spaces
and Filter Theory. For a deeper treatment of these topics, see [5] and [6]. We
recall that our work is strongly subordinate to the notion of filter since the
general setting.

Definition 1.1. (Topological Division Ring)
(K,+, ·, β) is a Topological Division Ring if and only if (K,+, ·) is a Division
Ring and β a topology on K such that

• + : K×K→ K is continuous respect to β

• · : K×K→ K is continuous respect to β

• inv : K \ {0K} → K \ {0K} is continuous respect to β, where inv(t) =
t−1 ∀t ∈ K \ {0K}.

Notation 1.2. We simply use K to indicate Valued Division Ring, instead of
(K,+, ·, | · |).

Definition 1.3. (TVS on Valued Division Ring)
Let K be a Valued Division Ring, then (E,+, ·, τ) is a Topological Vector Space
on K if and only if (E,+, ·) is a Left-K-module and τ a topology on E such
that

• + : E × E → E is continuous respect to τ

• · : K× E → E is continuous respect to τ

Notation 1.4. We simply use E to indicate a Topological Vector Space on K,
instead of (E,+, ·, τ).

Remark 1.5. In the previous definition, some authors add the hypothesis of
separation axiom for the topology τ (T2 Hausdorff condition). In a non-
Hausdorff TVS E, the most crucial topological aspect is the subspace {0E}
whose size gives a magnitude of the ”Hausdorffness” of the space E. Moreover,
we can easily show that the quotient space E/{0E} is a Hausdorff TVS over
K. In particular, for the differentiability of linear maps between non-Hausdorff
spaces, we can easily pass to the quotient and use the classical theory, but for
nonlinear maps there are some different aspect that we have to consider.

Lemma 1.6. Let K be a Topological Division Ring, (E,+, ·, τ) a non-Hausdorff
TVS on K, then we have that for all x ∈ {0E} and for all V ∈ τ such that
x ∈ V we have that

{0E} ⊆ V.



Directional derivatives on non-Hausdorff TVS 253

Proof. We just note that the translation is a homeomorphism and {0E} is a
closed vector subspace of E. In fact, if we fix x ∈ {0E}, then by the previous
argument we have that x + {0E} = {0E} for the subspace condition and x +
{0E} = {x} for the homeomorphism condition. In particular, we have that

{x} = {y} ∀x, y ∈ {0E}.

Definition 1.7. (Affine Space on a group)
Let (G, ∗) be a group, (A,Φ) is an Affine space on (G, ∗) if and only if Phi :
G× A→ A is left, free, transitive action of G on A.

Remark 1.8. Let (A,Φ) be an affine space on a group (G, ∗), then by definition
we have that for all u, v ∈ A there exists g ∈ G such that g ∗ u := Φ(g, u) = v
because the action is transitive and this g is unique because Φ is free.

Notation 1.9. Let (A,Φ) be an affine space on a group (G, ∗), then for all
w, u ∈ A and for all g ∈ G we indicate with w− u the unique g ∈ G such that
g ∗ u = Φ(g, u) = v.

Definition 1.10. (Filter)
Let X be a non-empty set, F is a Filter on X if and only if:

• ∅ 6= F ⊆ P(X) \ {∅}

• A ∩B ∈ F ∀A,B ∈ F

• A ⊆ B ⇒ B ∈ F ∀A ∈ F , ∀B ⊆ X.

Notation 1.11. Let (Y, ν) a topological space then for all y ∈ Y we use Uν(y)
to indicate the filter of neighbourhood of y respect to ν or only U(y) if is clear
the topology we use.

Definition 1.12. (Filterbase)
Let X be a non-empty set, F is a Filterbase on X if and only if:

• ∅ 6= F ⊆ P(X) \ {∅}

• ∀A,B(A,B ∈ F ⇒ ∃C ∈ F : C ⊆ A ∩B).

Definition 1.13. (Push-forward of a Filterbase)
Let X, Y be non-empty sets, F a filterbase on X, f : X → Y , then we define

f(F) = {U ⊆ Y | ∃W ⊆ X : f(W ) = U}.

Remark 1.14. Let X, Y be non-empty sets, F a filterbase on X, f : X → Y ,
then we easily verify that f(F) is a filterbase on Y .
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Definition 1.15. (Preorder on the family of Filterbases of a set)
Let X be a non-empty set, F ,G two filterbase of X, then we say that G ≤f F
if and only if

∀A(A ∈ G ⇒ ∃B ∈ F : B ⊆ A).

Definition 1.16. (Limit set respect to a Filterbase)
Let X be a non-empty set, (Y, ν) a topological space, F a filterbase on X and
f : X → Y , then we define

lim
F

Sf = {y ∈ Y | Uν(y) ≤f f(F)}

Remark 1.17. Let X be a non-empty set, (Y, ν) a topological Hausdorff space,
F a filterbase on X and f : X → Y , then there are two disjoint possibilities:

• limFSf = ∅

• ∃y0 ∈ Y such that limFSf = {y0}

Lemma 1.18. Let X, Y be non-empty set, (Z, ν) a topological space, F ,G
two filterbase respectively on X and Y , g : X → Y , f : Y → Z such that
G ≤f g(F) then we have that

lim
G
Sf ⊆ lim

F
Sf ◦ g

Proof. We fix z ∈ limGSf , then for all V ∈ U(a) there exists G ∈ G such that
f(G) ⊆ V , and by hypothesis there exists F ∈ F such that g(F ) ⊆ G, in
particular we have that

f ◦ g(F ) = f(g(F )) ⊆ f(G) ⊆ V

and so we can conclude that z ∈ limFSf ◦ g.

Lemma 1.19. Let X be a non-empty set, (Y, ν),(Z, µ) two topological spaces,
F a filter on X, g : X → Y , f : Y → Z a continuous map, then we have that

f(lim
F

Sg) ⊆ lim
F

Sf ◦ g.

In particular if f is an homeomorphism then we have the equality

f(lim
F

Sg) = lim
F

Sf ◦ g. (1)

Proof. We fix y ∈ limFSg, so by definition we have that for all V ∈ Uν(y) there
exists F ∈ F such that g(F ) ⊆ V . We want to verify that f(y) ∈ limFSf ◦ g.
So we fix O ∈ Uµ(f(y)). By continuity of f , there exists G ∈ U(y) such that
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f(G) ⊆ O, by the previous remark, there exists F ∈ F such that g(F ) ⊆ G
and so

f ◦ g(F ) = f(g(F )) ⊆ f(G) ⊆ O,

in particular f(a) ∈ limFSf ◦ g. If f is an omeomorphism by the prevoius
argument we have that

f−1(lim
F

Sf ◦ g) ⊆ lim
F

Sf−1 ◦ f ◦ g = lim
F

Sg

so by invertibility of we obtain

lim
F

Sf ◦ g ⊆ f(lim
F

Sg).

and we can conclude.

2 Directional Derivatives
Definition 2.1. (Directional filterbase respect to a point)
Let E,F be TVS on the Topological Division Ring K, S1 an affine space on E,
S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2, then we define

FA,x0
v = {{t ∈ K | t 6= 0K, x0 + tv ∈ A} ∩H | H ∈ U(0K)}

Notation 2.2. For simplicity we indicate FA,x0
v only with Fv and {t ∈ K | t 6=

0K, x0 + tv ∈ A} only with ΣA
v (x0).

Remark 2.3. By the previous definition is clear that ∅ 6= FA,x0
v ⊆ P(ΣA

v (x0)),
but is not necessary true that ∅ 6∈ FA,x0

v and therefore that FA,x0
v is a filterbase

of ΣA
v (x0).

Definition 2.4. Let E,F be TVS on the Topological Division Ring K, S1 an
affine space on E, S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2,
then we define φA,x0,v

f : ΣA
v (x0)→ F in this way

φA,x0,v
f (t) = t−1(f(x0 + tv)− f(x0)) ∀t ∈ ΣA

v (x0).

Remark 2.5. We recall that S1 and S2 are affine spaces, so when we write
x0 + tv we indicate Φ1(tv, x0) where Φ1 is the action of E on S1, and when we
write f(x0 +tv)−f(x0) we indicate the unique w ∈ F such that Φ2(w, f(x0)) =
f(x0 + tv), where Φ2 is the action of F on S2.

Definition 2.6. (Directional Derivatives)
Let E,F be TVS on the Topological Division Ring K, S1 an affine space on E,
S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2, then we say that
f is derivable respect to v in x0 over the set A if and only if
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• ∅ 6∈ FA,x0
v

• limFA,x0
v

SφA,x0,v
f 6= ∅

Definition 2.7. (Class of derivable function 1)
Let E,F be TVS on the Topological Division Ring K, S1 an affine space on E,
S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, then we define DK(A, v, x0)
in this way:

DK(A, v, S2, x0) := {f : A→ S2 | ∅ 6∈ FA,x0
v , lim

FA,x0
v

SφA,x0,v
f 6= ∅}

Notation 2.8. Let E,F be TVS on the Topological Division Ring K, S1 an
affine space on E, S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2,
then we indicate limFA,x0

v

SφA,x0,v
f with ∂Sf

∂v
(x0)

Remark 2.9. Let E,F be TVS on the Topological Division Ring K, S1 an
affine space on E, S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2,
then by the previous definition we have that

∂Sf

∂v
(x0) ⊆ F.

Moreover if f ∈ DK(A, v, S2, x) then thanks to Lemma 1.6 we have that

∂Sf

∂v
(x0) = y + {0F} ∀y ∈ ∂

Sf

∂v
(x0)

and so ∂Sf
∂v

(x0) is an affine subspace of F parallel to {0F}. In particular, the
case f ∈ DK(A, v, S2, x) for all x ∈ A is very interesting, because is well defined
∂f
∂v

: A → F/{0F} where the target space is T2. Thus we can understand that
in non-Hausdorff setting the first order theory is different from the classical
case, but for the higher order derivability we recover the T2 axiom passing to
the quotient and also the classical theory.

Remark 2.10. Let E,F be TVS on the Topological Division Ring K, S1 an
affine space on E, S2 an affine space on F , L : S1 → S2 an affine function
associated to the continuous linear mapping l : E → F then we have that

L ∈ DK(S1, v, S2, x) ∀v ∈ E ∀x ∈ S1

and
∂SL

∂v
(x) = {l(v)} ∀v ∈ E ∀x ∈ S1.
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Proof. We fix x ∈ S1 and v ∈ E. Certainly we have that FS1,x
v is a filterbase,

moreover by the properties of affine functions

φS1,x,v
L (t) = t−1(L(x+ tv)− L(x)) = t−1l(tv) = l(v) ∀t ∈ K \ {0K}

and so we can conclude by previous remark.

Proposition 2.11. (Composition with affine function I)
Let E,F,G be TVS on the Topological Division Ring K, S1, S2, S3 affine spaces
respectively on E,F,G, v ∈ E, A ⊆ E, x0 ∈ A, f : A → S2, L : S2 → S3 an
affine function associated to the continuous linear mapping l : F → G, then if
f ∈ DK(A, v, S2, x0) we have that

• L ◦ f ∈ DK(A, v, x0)

• ∂SL◦f
∂v

(x0) ⊇ l
(
∂Sf
∂v

(x0)
)

Proof. First of all we notice that FA,x0
v is a filterbase because f ∈ DK(A, v, x0).

Then, by affinity of L, we have that

φA,x0,v
L◦f (t) = t−1(L ◦ f(x0 + tv)− L ◦ f(x0)) = t−1l(f(x0 + tv)− f(x0)) =

= l(t−1(f(x0 + tv)− f(x0))) = l ◦ φA,x0,v
f (t) ∀t ∈ ΣA

v (x0).

so by Lemma 1.19 and the previous argument we have that

l

(
∂Sf

∂v
(x0)

)
= l

(
lim
FA,x0
v

SφA,x0,v
f

)
⊆ lim
FA,x0
v

Sl ◦ φA,x0,v
f = ∂SL ◦ f

∂v
(x0).

Proposition 2.12. (Composition with affine function II)
Let D,E, F be TVS on the Topological Division Ring K, S0, S1, S2 affine spaces
respectively on D,E, F , v ∈ E, A ⊆ E, x0 ∈ A, f : A → S2, L : S0 → S1 an
affine function associated to the continuous linear mapping l : D → E such
that L−1({x0}), l−1({v}) 6= ∅. If y0 ∈ L−1({x0}), w ∈ l−1({v}), H = L−1(A)
and f ∈ DK(A, v, S2, x0) we have that

• f ◦ L ∈ DK(H,w, S2, y0),

• ∂Sf
∂v

(x0) = ∂Sf◦L
∂w

(y0).

Proof. First of all we have to show that FH,y0
w is really a filterbase and we can

do this by the following equality

ΣH
w (y0) = ΣA

v (x0)
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and in particular we have that FH,y0
w = FA,x0

v . In fact, if we fix t ∈ ΣH
w (y0),

then by definition and the properties of affine functions we have

x0 + tv = L(y0) + l(tw) = L(y0 + tw) ∈ A (2)

and so t ∈ ΣA
v (x0). Conversely if we fix t ∈ ΣA

v (x0), thanks to (2) and by
definition of H, we obtain that y0 + tw ∈ H and so t ∈ ΣH

w (y0). Moreover by
(2) we can check that

φH,y0,w
f◦L (t) = φA,x0,v

f (t) ∀t ∈ ΣA
v (x0)

so we conclude with

∂Sf ◦ L
∂w

(y0) = lim
FH,y0
w

SφH,y0,w
f◦L = lim

FA,x0
v

SφA,x0,v
f = ∂Sf

∂v
(x0).

Remark 2.13. Let E,F be TVS on the Topological Division Ring K, S1 an
affine space on E, S2 an affine space on F , v ∈ E, A ⊆ E, x0 ∈ A, f : A→ S2.
If H = ΣA

v (x0)∪ {0K}, g : H → S2 is the function defined as g(t) = f(x0 + tv)
for all t ∈ H, then we have that

• g ∈ DK(H, 1K, S2, 0K) ⇐⇒ f ∈ DK(A, v, S2, x0)

• If is valid one of the previous condition: g′(0K) := ∂Sg
∂1K

(0K) = ∂Sf
∂v

(x0).

Proof. We notice that {t ∈ K | t 6= 0K, t ∈ H} = ΣA
v (x0) and so FH,0K1K = FA,x0

v .
Moreover, by a simple calculation we have that

φH,0K,1Kg (t) = φA,x0,v
f (t) ∀t ∈ ΣA

v (x0)

and thus we can conclude by previous remark.

Proposition 2.14. Let E,F be TVS on the Topological Division Ring K, S1
an affine space on E, S2 an affine space on F , v ∈ E, ξ ∈ K \ {0K}, A ⊆ E,
x0 ∈ A, f : A→ S2, then we have that

f ∈ DK(A, v, S2, x0) ⇐⇒ f ∈ DK(A, ξv, S2, x0)

and if is valid one of the previous condition

∂Sf

∂ξv
(x0) = ξ

∂Sf

∂v
(x0).
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Proof. If v = 0E is clear, so we can suppose v 6= 0E. First of all we have to
verify that FA,x0

ξv is really a filterbase on ΣA
ξv(x0), so we just check, thanks to

the previous argument, that

ΣA
ξv(x0) ∩H 6= ∅ ∀H ∈ U(0K).

So we fix H ∈ U(0K). Since ξ 6= 0K, then the homothety y 7→ ξy, y 7→ ξ−1y are
homeomorphism, being K a division ring, so ξH ∈ U(0K). Moreover we can
easily see that

ΣA
ξv(x0) = ξ−1ΣA

v (x0).
In particular

ΣA
ξv(x0) ∩H = ξ−1ΣA

v (x0) ∩ ξ−1ξH = ξ−1(ΣA
v (x0) ∩ ξH) 6= ∅

because FA,x0
v is a filterbase on ΣA

v (x0). To conclude the proof we have to
verify that

lim
FA,x0
ξv

SφA,x0,ξv
f 6= ∅.

First of all we notice that for all t ∈ ΣA
ξv(x0) we have thanks to the associativity

of K

φA,x0,ξv
f (t) = t−1(f(x0 + tξv)− f(x0)) = (ξξ−1)t−1(f(x0 + tξv)− f(x0)) =

= ξ(tξ)−1(f(x0 + tξv)− f(x0)) = ξφA,x0,v
f (tξ)

So if we call ρKξ : K → K the right-homothety on K, and λFξ : F → F the
left-homothety on F , we have that

φA,x0,ξv
f (t) = λFξ ◦ φ

A,x0,v
f ◦ ρKξ (t) ∀t ∈ ΣA

ξv(x0).

We can see easily that ρKξ (ΣA
ξv(x0)) = ΣA

v (x0) and since K is a topological
division ring so ρKξ is a homeomorphism with ρKξ (0K) = 0K and so by definition
of continuity we have that

FA,x0
v ≤f ρKξ (FA,x0

ξv )

so thanks to Lemma 1.18 we have that

lim
FA,x0
v

SφA,x0,v
f ⊆ lim

FA,x0
ξv

SφA,x0,v
f ◦ ρKξ

and thanks to Lemma 1.19 and being λFξ an homeomorphism we obtain that

lim
FA,x0
ξv

SφA,x0,ξv
f = lim

FA,x0
ξv

SλFξ ◦φ
A,x0,v
f ◦ρKξ = λFξ

(
lim

FA,x0
ξv

SφA,x0,v
f ◦ ρKξ

)
= ξ

(
lim

FA,x0
ξv

SφA,x0,v
f ◦ ρKξ

)
⊇
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⊇ ξ

(
lim

FA,x0
v

SφA,x0,v
f

)
6= ∅,

in particular we have shown that f ∈ DK(A, ξv, S2, x0) and

ξ
∂Sf

∂v
(x0) ⊆ ∂Sf

∂ξv
(x0),

therefore applying again the argument used above, we have that

ξ−1∂
Sf

∂ξv
(x0) ⊆ ∂Sf

∂v
(x0)

and multiplying by ξ, we finish.

Remark 2.15. In the Proposition 2.14 is crucial the associativity of the di-
vision ring K. In particular, this result is not necessary true for TVS over
general topological division algebras.
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