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Abstract 

 

In this paper, a new class of lifetime distributions will be constructed using 

the ascendant order statistics. The constructed class is called Weibull-generalized 

truncated Poisson (WGTP) distribution. The properties of Weibull-generalized 

truncated Poisson (WGTP) distribution will be studied. The maximum likelihood 

(ML) method and the expectation maximization (EM) algorithm will be used to 

estimate the parameters. A comparison between the new class of distributions and 

other some lifetime distributions will be performed based on a real set of data.  

 

Keywords: Lifetime distribution; Weibull distribution; Truncated Poisson; Failure 

rate function; Order Statistics; Maximum likelihood estimation; EM Algorithm 

  

 

1. Introduction  
 

 There are several distributions have been proposed to model lifetime data by 

compounding some useful lifetime distributions. For example, Adamidis and 

Loukas (1998) introduced a new compounding distribution named the Exponential 

–Geometric (EG) distribution with decreasing failure rate. Also, Kus (2007) 

proposed the Exponential-Poisson (EP) distribution, where the baseline is the 

exponential distribution and the latent variable has zero-truncated Poisson. Lu and  
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Shi (2012) extended the (EP) distribution using the mixture of the Weibull 

distribution as a baseline and zero-truncated Poisson as a latent variable. Barreto-

Souza and Cribari-Neto (2009) introduced another generalization of the (EP) 

distribution by inserting a power parameter. Rahmouni and Orabi (2017) proposed 

new family distributions by mixing the exponential and generalized truncated 

Poisson distributions called the exponential-generalized truncated Poisson (EGTP) 

distribution.  

In this paper, we introduce a generalization of Rahmouni's and Orabi's (2017) 

work by compounding the Weibull distribution and the generalized truncated 

Poisson distribution. The new distribution called the Weibull-generalized truncated 

Poisson (WGTP) distribution. Kus's (2007) and Lu's and Shi's (2012) works are 

special cases from our work. In section 2, the new proposed model will be 

constructed including the probability density function (pdf) and cumulative 

distribution (cdf) with some special cases. In section 3, Some statistical proprieties 

of Weibull-generalized truncated Poisson (WGTP) distribution will be derived such 

that, the moment generating function, the reliability and failure rate functions, and 

the random number generation. The estimation of the parameters using the 

maximum likelihood method and the expectation maximization (EM) algorithm 

will be given in section 4. Finally, the application of a real data set is illustrated in 

section 5 to show the flexibility of the new distribution is more than some the other 

distributions.   

 

2. The proposed model 
 

Let  1 2, ,....., nX X X X  be random variables distributed according to Weibull 

distribution with parameter   and   with probability density function (pdf) as   
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where   is the scale parameter and   is the shape parameter. The cumulative 
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If z is a discrete random number following the
 )1( k  truncated Poisson distribution 

with probability function ( )P Z z   given as:- 
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  . Also, the 

density function (pdf) of thi  order statistic 
)(iX  is given by David and Nagaraja  
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(2003), Balakrishnan and Cohen (1991) Then, the pdf of thi - smallest value of 

lifetime is given as:- 
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In the joint probability density function we derive the ascending order 

   zXXX ,...,, 2)1(
. The following equation is the result of using equations (2.1) and 

(2.2):-    
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where x , z  are the life time of a system and the last order statistic, respectively and 

, , ( , )kg x z   is the joint probability density function, this joint function is obtained  

by compounding a truncated at 1 kz  Poisson distribution and thk  order statistic. 

In order to get the probability density function for the variable x, we will sum the 

joint function given in equation (2.3) on the variable z. Thus, our proposed new 

family of lifetime distributions, named the Weibull-generalized truncated Poisson 

(WGTP) distribution, is the marginal density distribution of x  given by  
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where 0 and 0   are  shape parameters and 0  is scale parameter. When 

1  the WGTP distribution reduces to Exponential-generalized truncated Poisson 

(EGTP) distribution.  

Also,   kIG ,  is the lower incomplete gamma function, can be defined as: 
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According to (2.4), we have the Weibull- generalized truncated Poisson (WGTP) 

distribution function of   ,,X  as 
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where,   




























x
v exp1  

For modeling any order statistic, the WGTP distribution would be more 

appropriate. As will be shown below, the minimum lifetimes are special models 

such as Weibull–Poisson distribution due to Lu and Shi (2012) and exponential–

Poisson distribution is proposed by Kuş (2007). 
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In table (1), the PDF in Eq. (2.4) for some special cases at the first, second and third 

order statistics is presented.     

 

Table 1. The PDF of WGTP distribution for some special cases 

 

Order 

Statistics 

k PDF 

First 1k
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x
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Table (2.1) shows that the particular case of the WGTP distribution, for 1k  

is the lifetime Weibull–Poisson distribution (WP) due to (Lu and Shi (2012)). The 

PDF of WP is monotone decreasing if 10   and unimodal if 1 . Note that, 

for 1k  the WGTP is monotone decreasing with a model value equal to 
 

x

e


given at 0x . As 1k  and 0 the WGTP reduces to a two-parameter Weibull 

distribution. Also, 1k  and 1  the WGTP reduces to an exponential 

distribution. For = 2  , 𝜆 = 1  , 𝜃 = 15 , k={1,2,3} the probability density functions 

of (WGTP) are illustrated in the following graph: 
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3. Statistical Properties 

 
3.1 Moment  

In this subsection, the thr non-central moment and moment generating 

function are derived. 

If X  has   ,,αGTPW , then the thr non-central moment of X  is given as 

following:- 
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(3.1) 

when 1r , the equation (3.1) becomes the expected value. From thr moment of 

  ,,αGTPW distribution, the first four moments function of X  can be derived by 

using r  1, 2, 3 and 4 as follows:- 
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where   



 

0

1, dekIG k
is lower incomplete gamma function. Also, the 

variance  

 

3.2 Random number generation 

Using the CDF of X  in equation (2.5), the distribution of ( )kG x is right-

truncated Gamma, the random variable of X can be generated by using the 

following steps: 

Generating a random variable y belong to  ,0  from the truncated Gamma 

distribution (see, Philippe (1997)). 

http://link.springer.com/search?facet-author=%22ANNE+PHILIPPE%22
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Solving the nonlinear equation in y : 
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Computing the values of X as 
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where X  is WGTP random variable with parameter  , and . In particular, for 

1k  we obtain X directly from the following equation:  
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where 1U  is a random variable with standard uniform (0, 1) distribution. 

 

3.3 Reliability functions 

Let X  be a random variable of the Weibull- generalized truncated Poisson 

distribution  ( , , )WGTP    , then the survival function can be presented as follows  
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Also, the hazard rate of the WGTP is illustrated as 
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Analytically speaking, the hazard function and the time failure probability 

distribution are related to each other. This relationship leads to examining the 

increase or the decrease in the failure rate properties of life-length distributions. 

Gamma distribution is an increasing failure rate, if  xH X  increases for all X such 

that   1XG  .  

If
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Furthermore, the cumulative hazard function of the GTPW   is given as  
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In table (2) the reliability function in Eq. (3.3) and the failure rate function in Eq. 

(3.4) for some special cases at the first, second and third order statistics are 

presented.     

 

Table 2. The Survival and Failure rate functions of WGTP distribution for 

some special cases 
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4. Estimation of the Parameters 
 

In this section, we shall derive the maximum likelihood estimates of unknown 

parameters  , and  of WGTP distribution. Let 
nXXX ..., , , 21
 be a random 

sample size n  from  , ,WGTP    . The maximum likelihood function of this 

sample is: 
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Substituting from (2.4) into (4.1), we have 
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The log likelihood function becomes: 
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The components of the score vector for the parameters  , and  are given by 
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The maximum likelihood estimates 


, ̂  and ̂  of the WGTP parameters can 

be solved using the iterative EM algorithm to treated the incomplete data problems 

(McLachlan and Krishnan, 1997; Dempster et al., 1977). This iterative method is 

composed of on frequently substitution the missing data with the new estimated 

ones to improve the parameter estimates. The criterion method applied to determine 

the MLEs is the Newton–Raphson algorithm that needed second derivatives of the 

log-likelihood function for all iterations. The major disadvantage of the EM 

algorithm is to some extent slow convergence, compared to the Newton–Raphson 

method, when the “missing data” contain a relatively large amount of information 

(Little and Rubin (1983)). Lately, various researchers have applied the EM method 

like Adamidis and Loukas (1998), Adamidis (1999), Ng et al. (2002), Karlis (2003) 

and others. Newton-Raphson is desired for the M-step of the EM algorithm. 

To begin the algorithm, we ought to determine a hypothetical distribution of 

complete-data with PDF in equation (2.4) and then drive the conditional mass 

function as: 
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E-step: 
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5. Application Example 
 

In the section, the fitting of WGTP distribution to a real set of data will be 

compared with the EGTP, EP, EG, EL, gamma and Weibull distributions. The real 

set of data in table (4) represents 24 observations of “time intervals between 

successive earthquakes” The real set of data from Kus (2007) and is analyzed by 

Barreto-Souza and Bakouch, (2013).  

 

 

Table 3.  

1163 3258 323 159 756 409 501 616 

398 67 896 8592 2039 217 9 633 

461 1821 4863 143 182 2117 3709 979 

 

 

Table (4) shows the fitting of the GTPW, EGTP, EP, EG, EL, gamma and Weibull 

distributions to the real set of data in table (4). It contains estimation of parameters, 

calculated values of Kolmogorov–Smirnov (K-S) an p-values. 
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Table 4. The Goodness of Fit for real set of data 

Distributions 
Estimates K-S 

value 
p-value �̂� ̂  ̂  

WGTP:      

First order (𝑘 = 1) 0.879243 8.54
× 103 

6.336146 0.409058 0.996152 

Second order (𝑘 =
2) 

0.220368 1.33
× 105 

3.3751 1.137745 0.150137 

Third order (𝑘 =
3) 

0.463342 5.22
× 104 

21.240553 0.31921 0.999957 

EGTP:      

First order (𝑘 = 1) - 2.77
× 103 

2.6170 0.0950 0.9820 

Second order (𝑘 =
2) 

- 1.80
× 103 

4.5600 0.1480 0.6680 

Third order (𝑘 =
3) 

- 1.37
× 103 

6.1520 0.1830 0.3980 

Fourth order (𝑘 =
4) 

- 1.13
× 103 

7.6420 0.2010 0.2880 

EB - 2.70
× 103 

0.1046 0.0985 0.9738 

EL - 2.42
× 103 

0.1260 0.0885 0.9885 

EP - 2.78
× 103 

2.6377 0.0972 0.9772 

EPL - 3.33
× 103 

0.5312 0.0712 0.9990 

EG - 3.03
× 103 

0.7369 0.0964 0.9690 

Gamma - 2.00
× 103 

0.7117 0.1235 0.8328 

Weibull  1.23
× 103 

0.7854 0.1004 0.9690 
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