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Abstract

The development and interest of numerical techniques for obtain-
ing approximate solutions of partial differential equations has increased
very much in last decades. Among there are meshless methods. Recently
radial base functions have been used in meshless methods applied to nu-
merical solutions of partial differential equations, pioneers works being
those of Kansa, Fasshauer, Wendland and Bohamid among others. In
this paper, we employ the method, using two RBFs, TPS and MQ, to
obtain numerical solution of coupled Burgers equation.
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1 Introduction

In this paper, we give a numerical solution for coupled and homogeneous Burg-
ers equation with a meshless method and using radial base functions (RBF).
The equation is defined in an open set €2, with smooth boundary and connected
in R?, for a time interval [to, T] y to > O:

%(x, t) — vAu(x, t) + (u(x,t) - Viu(x,t) =0, ifxeQ, t e ty;T]

u(x, t) = g(x,t), ifx e, telty;T]
u(x,0) = up(x), ifxeQ

(1)
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where u = (u(x,t),v(x,t)) : Q x [to,T] — R2?, is a solution of (1), g =
(g1(x,1), ga(x,t)) : OQ X [tg, T] — R? are given functions and x = (z,y).

Burgers equation comes out in turbulence studies in fluid mechanics [14,
15], and presents nonlinear terms associated to convective phenomena (u(x,t)-
V)u(x,t) and the term Au(x,t) of diffusive phenomenon. In the study of
turbulence, [18] discovered that small perturbations grow up in a big domain
of smooth flow, joined by a vortex layer on which the strong turbulence is
concentrated. Recently, all this became a matter of interest for researchers,
due mainly to applications of Burgers model in statistical physics and fluid
dynamics.

In order to decide whether the proposed approximation method is ade-
quate, it is necessary to have an exact solution of the equation with initial
and boundary conditions. In [19] some approximate solutions and exact solu-
tions to Burgers equation, with the aid of Hopf-Cole transformation are given.
In [2] 35 different analytic solutions with various initial conditions are pro-
posed. [22] considered and applies a procedure to extend analytic solution to
n—dimensional problems by using coset sets. In [16] there is given a method
to find the exact solution of unhomogeneous Burgers equation using Hopf-Cole
and Darboux transformations.

From the numerical viewpoint, [1] proposes a finite difference scheme to-
tally implicit in that the nonlinear system is solved by Newton method. [10]
uses finite differences of three points at two levels, fourth order in space and
second order in time. Von-Neumann stability analysis showed that the method
is unconditionally stable. [12] uses a standard Euler scheme with a constant
discretization and standard scheme of finite differences upwind in spatial direc-
tion and using the process of quasi-linearity to come up non-linearity. It was
proved that the solution sequence of the linear equations obtained after apply-
ing cuasi-linearization converges quadratically to the solution of the original
nonlinear problem.

Afterwards, in [13] this same author proposed a numerical method based
on Crank-Nicolson scheme. In [11], there is given the modified local method of
Crank-Nicolson (MLCN) for one and 2-dimensional Burgers equations. MLCN
is a scheme of finite explicit differences with a simple calculus and uncondi-
tionally stable. In [20], it is proposed an implicit exponential scheme of fi-
nite difference to solve he coupled Burgers equation with adequate initial and
boundary conditions. From the numerical perspective of meshless methods, in
[3] it was introduced a new method where Burgers n—dimensional equation
is taken and its solution is approximated using thin plate splines (TPS) as
well as RBF for the case of stable state. With this methodology the coupled
PDE is put into a system of non-linear ODE’s, which are solved using Newton
method.

The advantage of approximating the solution using this interpolation is that



Meshless RBEF method 207

it becomes easier to simulate the behavior of the solution on parameterized
and amorphous domains (such as Lipschitz) showing advantages as compared
with other methods as FEM, FDM. Afterwards [4] used the same method
already mentioned but including the time variable, giving rise to a complete
development for approximation of Burgers n—dimensional in transition state
by using TPS for a spatial discretizing problem and an implicit scheme of
s—stages Runge-Kutta in time. This work is developed based on these two
articles, implementing another RBF and using different polynomial bases. For
more detailed revision of Burgers equation, see for example [23].

2 Meshless aproximation method

In this section we develop a method to calculate the approximate solution of
the coupled Burgers equation using RBFs of order m in R2. Let the following
two finite subsets be with n (interior points) and n’ (boundary location points)
in © and 0f2 respectively, A, = {x1,...,x,} C Q, AL, ={x],...,x/,} CIN.

We assume that A’, contains a subset of points II,,_;(R?) — solvent, where
I1,,_1(R?) is the space of polynomials of degree (m —1) in R%. Let N = n+n/
total number of points in Q and Ay = A, U A’,. Moreover, h is definded as the
Hausdorff distance from A, to Q (h = ha, a), ha, 0 = SUPyeq Mingea, [[X — x|, -

If 2 has a smooth boundary 02 and contains /N location points, then Burg-
ers equation can be approximated by an interpolating procedure represented
by a system of algebraic equations [4]. The idea is that such an approximation
ux(x,t) € R? interpolates to each point in A, by using the function

n dm
up(x) :Z%@bm(HX—XiH)+Zﬁj%‘(X)a (2)

subject to orthogonality conditions Y !, a;qj(x;) = 0,5 = 1,...,dy,,, where
d,, is the dimension of space IT,,,_1(R?) [8, 14, 15, 17]. If the interpolation is
defined with M(Q as RBF and m = 1, it is not necessary to include the second
term on the right side of equation (2) and the orthogonal conditions. The
approximation (2) can be written as a system of equations (n+d,,) X (n+d,,)
nonsingular with the form:

(o 6)(3)-(5)

where « and ( are coefficients (vectors) to be determined, z is the vector of
solutions known at each interior point z = (u(xy),...,u(x,))” 0 is null matrix

A X dpy Pp(x) = ¢ (||x]]) is the RBF K and @ given by:

K= [(bm(xl - zj)]lgi,jgn7 Q= [%(373)] 1<j<n .

1<i<dm
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Let u = (u,v) : Q x [tg, T] — R? be exact solution of (1) and X, unknown
matrix function n x 2

u(x1,t) v(xg,t)
X(t) = : : ,  fort e [ty;T]. (3)
u (Xp, ) v (Xp, 1)

According to [8], for any t € [tg,T], there is an unique approximation
uy(x,t) interpolating uy(x,t) on the point set Ay. After some simple cal-
culi and in accord to Burgers equation structure, we obtain a matrix-valued
function F,, : R? x R™2 x [ty, T| — R?:

P, X(8),8) = v ([Ban(9)]" X(8) + [Abu(x)]" G (1))
— (an ()X () + bu(x)G(0)) ([Vam ()] X(0) + [Vba ()] (1))

and a function F,, : R™? x [ty, T] — R™? given by

F, (x1, X(1),1)
Fo (%0, X(t),1)
For more details in this development and definitions of coefficients a, (x), by (x)

y G(t), see for example [4]. The expression u, defined in (2) satisfied the
approximation scheme:

ot (4)

{ %(X, t) = vAu,(x,t) — (up(x) - V)uu(x,t), V(x,t) € A, X [to, T
un(x,t) = g(x,t), V(x,t) € AL, x [to, T] .

if and only if X (¢) defined by (3) satisfies the matrix differential system [4]

X'(t) = Fu(X(t),t), fort € [ty,T] (5)
X (to) - Xo,
where Xo = [ug(x1)%, ... .ug(x,)"]. In this way, we transform partial differential

equation into a system of nonlinear ordinary differential equations to be solved
by any known method. In this case, we used the explicit Runge-Kutta method
of four stages [5].

3 Numerical experiments

In this section, we give numerical results for the implementation developed
just before. We analyzed two types of RBF, TPS and MQ. For TPS, we used
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Figure 1: Square domain of [0, 1] x [0, 1], with 1089 interior points and 324
boundary points.

Hermite polynomials as a basis for the space I1,,,_;(R?). We took order of RBF
m = 2 for TPS and m = 1 for MQ, hence d,,, = 3 [§].

The implementating was developed in Python 3.9 and the square domain
just shown in Figure 1. To compare the approximate solution u;, with the
analytic one, we used the relative error given by norms 2 and infinity:

erﬂ ||u(X7 t) - uh(Xv t)”p

2 xeq luG D)l

Analytic solution of (1) is derived directly from the proposed solution in [9].

E, = ,  forp =2, 0. (6)

3.1 Thin plate splines (TPS)
In this case ®,,(x) is defined as [8, 14, 15, 17|

B, (x) = [[x]* log [1x] - (7)

Therefore, the Burgers equation using TPS and polynomial basis with di-
mension d,, = 3 is given by

un(x) = Y i [x = xil*log (Ilx — xill) + Big1(x) + Baga(x) + Baas(x),  (8)

1=1

subject to orthogonality conditions
S ain(x) =0, Y oig(x) =0, > aig(xi) = 0. 9)
i=1 i=1 i=1

{q1,q2,q3} is a basis for the space II;(R?). The 2D Hermite polynomials
take the form [24]
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Figure 2: Analytic solution (left) and approximate (right) for ¢ = 0.5, with
500 interior points and Re= 100. u-component (up), v-component (down).

Lo Lo

n v =0.02 v =10.01 v =0.001 v =0.02 v =0.01 v = 0.001
25 | 2.2321 x 1073 8.4215 x 1072 9.7583 x 10~' | 3.0882 x 1072 1.4845 x 10! 1.2948
80 | 1.0856 x 1073 9.1466 x 1073  4.5582 x 10!

6.9662 x 1072 1.7405 x 1072  8.1577 x 10!

500 | 5.8435 x 10~%  7.7409 x 10~* 1.7702 x 101 | 1.0587 x 103 1.5403 x 10~3  4.6921 x 10!

Table 1: Relative error for ¢ = 0.5 of component u using Hermite polynomials.

ante = (20~ 2)" (- 2" a0

a(x)=1, @) =2z g¢gx) =2y (11)

therefore,

Results are shown in tables 1, 2 and Figure 2.

Lo Lo

n v =0.02 v =0.01 v =0.001 v =0.02 v =0.01 v = 0.001
25 | 1.2108 x 10~2  5.5166 x 1072 8.9118 x 10T | 2.0833 x 103 1.1274 x 10~ T 1.0095
80 | 9.1856 x 10~* 6.0869 x 1073  3.9302 x 10!

1.5661 x 1073 1.4004 x 10=2  7.1451 x 1071

500 | 3.9360 x 10~%  5.3524 x 10~* 1.2171 x 1071 | 8.9174 x 10~* 1.3292 x 10~3  3.3440 x 10!

Table 2: Relative error for t = 0.5 of component v using Hermite polynomials.
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Lo Lo
n v =0.02 v =0.01 v = 0.001 v =0.02 v =0.01 v = 0.001
25 | 4.6101 x 1073  1.8761 x 10~1 9.9101 x 10~' | 6.3053 x 10=2 4.0744 x 10! 1.3662
80 | 2.1571 x 1072  9.1466 x 10~2  5.3042 x 10~! | 1.2250 x 1072 1.7405 x 10~!  9.2023 x 10~}
500 | 6.7752 x 10~*  1.1519 x 1073 1.8463 x 107! | 1.2274 x 1073 2.2920 x 103 4.8938 x 10~ !
Table 3: Relative error for ¢t = 0.5 of component u using MQ.
Lo Lo
n v =0.02 v =0.01 v = 0.001 v =0.02 v =0.01 v = 0.001
25 | 1.8122 x 1073  1.2148 x 107! 1.0230 4.0401 x 1072 3.0617 x 107! 1.1873
80 | 1.0091 x 1073  6.0869 x 1072 4.9811 x 10~ | 9.1033 x 10™3  1.4004 x 10~* 8.6100 x 10!
500 | 4.5635 x 1074 7.9644 x 10~% 1.2694 x 10~! | 1.0339 x 1073 1.9778 x 103  3.4878 x 10~!

Table 4: Relative error for t = 0.5 of component v using MQ.

3.2 Generalized Multiquadratic (GMQ)

Taking g = 0.5, functions GMQ are defined by

oi(x) = (1+ X)), x=(z,9). (12)

Therefore, the approximation using MQ is:

wn(x) = Za (14 x—x)?)". (13)

Results are shown in tables 3, 4 and Figure 2.

Experiments shown that the best approximation was obtained using TPS
as RBF and Hermite polynomials. Also we used Laguerre polynomials, but the
results are not given in this paper. The results are finally shown in Figure 3.
Big Reynolds (> 1000) shown less variation among all other methods, and the
approximation error increases when value Re does. Whereas, taking Reynolds
number in laminar flow (50, 100) is plain that Hermite polynomials show better
approximation. We conclude that Reynolds number has direct effect on the
exactness of u;, and it is an open research field, as mentioned in [4], where
numerical experiments correspond to small Reynolds numbers (less than 50).

Acknowledgements. We wish to thank the Mathematics department and
its MSc program at Universidad EAFIT, professor Cristhian Montoya for his
comments and suggestions leading to improvements of this paper.
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Figure 3: Comparative of Ly error for 500 points and various Reynolds numbers
for u (up) and v (down).
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