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Abstract
This manuscript introduces a new perspective for nonlinear ion-

acoustic waves (IAWs) in an unmagnetized collisionless plasma contain-
ing superthermal electrons and positrons (ep) distribution, and strongly
relativistic ions. The Korteweg-de Vries (K-dV) equation is derived by
the reductive perturbations technique (RPT). By bifurcation analysis of
the planar dynamical system, we predicted the types of solutions of the
K-dV equation with the assistance of phase portraits. We proved the
existence of IA blow-up solitary, soliton, and periodic wave solutions.

These three types of exact solutions are derived by using the
(
G′

G

)
expansion method and illustrated in 2-dimensional and 3-dimensional
graphics. A novel form of the blow-up solitary wave is obtained with the
effects of a strongly relativistic factor of ion, superthermality of ep parti-
cles κe,p, the ratio of electron to positron temperature, the ratio of ion to
electron temperature, and the density of positron are illustrated. The
derived results could be useful for understanding and explanation of
numerous applications in the interstellar medium and pulsar relativistic
wind which contain highly energies superthermality ep.
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1 Introduction:

Nonlinear evolution equations (NLEEs) are considered as the most impor-
tant branch for many phenomena in astrophysical plasmas. The attention has
been attracted to study the propagation of nonlinear wave in multi compo-
nents plasma electron, positron and ion (epi). In the last few decades, the epi
plasma is appeared in many interplanetary spaces and astrophysical plasma
where the nonlinear waves, like solitary, soliton, shock are illustrated. In the
interstellar media when atoms collide with cosmic-ray nuclei, positrons are
generated (Moskalenko and Strong [22]). The electrons and positrons have
opposite charges but the same mass and they have high-energy charged, so
the Kappa distribution will be the most appropriate to ep plasmas. Recently
many researchers studied ep plasma in many applications (Gaimin et al. [11],
Boubakour et al. [3], Pakzad [24], Das [5], El-Awady et al.[6], El-Tantawy and
Moslem [10], Mugemana et al. [23]). The superthermal or called Kappa (κ)
distribution was introduced for the first time as acceptable to particle data
entrenched with the OGO satellite by Vasyliunas (Vastliunas [39]). The par-
ticles obey to kappa distribution due to it has high-energy tails straying away
from a Maxwellian distribution. The Kappa distribution type gives a powerful
structure for investigation of real data in auroral zone, solar wind, interstel-
lar plasma, etc. The index κ is measuring the aberration from Maxwellian
equilibrium, where κ→∞ the particles reach to Maxwellian distribution and
in solar wind with coronal electrons will be in range 2 < κ < 6 (Krimigls et
al. [17], Maksimovic et al. [19], Pierrard and Lazar [25]). Many of studies
with superthermal ep plasma are performed in nonrelativistic plasmas, e.g.
(El-Tantawy and Moslem [9]), (Shahmansouri and Astaraki [37]) as well as
(Mehdipoor [20]). But we know that when the velocity of ion accessed to the
speed of light, so the relativistic effect plays a pivotal role in the behavior of
IA waves. Weak relativistic plasmas are studied in many researches, (Gill et
al. [12]) used the RPT to derive K-dV equation of three components plasma.
They observed that the relativistic factor and other parameters consequently
effect on the behavior of soliton wave, also they conclude that only compressive
solitons are attained. (Saeed et al. [27]) investigated K-dV equation of plasma
containing of Boltzmann electrons, positrons and weak relativistic ion, they
observed that the soliton declines as relativistic factor increases. (Hafez et al.
[13]) described the influence of plasma parameters with nonextensive electrons,
Boltzmann positrons and weakly relativistic ions on the behavior of soliton
waves. The bifurcation analysis of dynamical system was applied recently of
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IAWs with kappa distributed components in each of non-perturbations plasma
(Mondal et al. [21], Hafez et al. [15]) and perturbation plasma (Saha and
Chatterjee [29], Saha and Chatterjee [30], El-Monier and Atteya [7]). Saha
and Chatterjee [31] derived K-dV equation by RPT and studied the bifurca-
tion analysis of electron acoustic waves. They proved the existence of two
types of solutions, blow up solitary and periodic waves of plasma containing
cold electron, hot superthermal electron and nonrelativistic ions. Undoubt-
edly, from previous researches the bifurcation theory of dynamical systems has
tremendously important in study both solitary and periodic waves of many
phenomena in plasma physics. To obtain the exact solutions of various NLEEs
many methods were undertaken, such as the tanh-sech method, exp-function
method, sine-cosine method and extended tanh method. Recently, some new
methods was formulated among of them is (G′/G)-expansion method. Wang et
al. [40] introduced this method to get the travelling waves solutions of NLEEs
and then the attention has attracted by many researchers to use it in different
NLEEs (Shahein and Seadawy [34], Shahein and El-Shehri [33], Shahein and
Abdo [32]). Hafez et al. [14] derived Burger equation and investigated the
IA shock waves in weakly and strongly relativistic ions with nonextensivity
electrons and positrons. They proved existence of shock and periodic waves
by using (G′/G)-expansion method.
Up to the best of our knowledge, there is no studies of bifurcation analysis
with highly relativistic ions of plasma containing superthermal ep by using
(G′/G)-expansion method. Therefore, we looking forward to this paper offers
a rich source for understanding of IAWs that may develop in the interstellar
medium where we will introduced a new point of view of IAWs with strongly
relativistic ions. The arrangement of article as: In sec. (2) basic equations and
physical situation, the derivation of K-dV equation in sec.(3), Bifurcation
analysis of K-dV equation in sec. (4), in sec. (5) the exact solutions of K-dV
equation with (G′/G)-expansion method, in sec. (6) results and discussion and
finally conclusion in sec.(7) are given.

2 Basic equations and physical situation:

In this work, we consider a multicomponent unmagnetized collisionless plasma
containing two Kappa distributed electrons and positrons in addition to rel-
ativistic ions. In equilibrium, the three components obey to quasi-neutral
condition in the form ne0 − np0 − ni0 = 0 , where ne0, np0 and ni0 are the
unperturbed number density of electrons, positrons and ions. Also, the phase
velocity of nonlinear IAW is much less than the thermal velocities of electrons
and positrons but larger than the thermal velocity of ions, so we can avoid the
electrons and positrons inertia. The nonlinear dynamics of nonviscous IAW
equations are governed by the normalized system of equations (Javidan and
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Saadatmand [16], Hafez et al. [14]).
The continuity equation:

∂ni
∂t

+
∂(niui)

∂x
= 0. (1)

The momentum equation:

∂(µui)

∂t
+ ui

∂(µui)

∂x
= −∂φ

∂x
− σi
ni

∂pi
∂x

. (2)

The energy equation:

∂pi
∂t

+ ui
∂pi
∂x

+ 3pi
∂(µui)

∂x
= 0. (3)

Poisson’s equation:
∂2φ

∂x2
= ne − np − ni. (4)

where µ is relativistic factor for strongly relativistic plasma reads as µ =

(1− ui
C2 )2 ' 1 +

u2i
2C2 +

3u4i
8C4 ( Hafez et al. [14]). The superthermal electrons and

positrons distribution are (Shahmansouri and Astaraki [37], Mehdipoor [20],
Hafez et al. [14]).

ne =
1

1− ρ

(
1− φ

κe − 3
2

)−κe+ 1
2

∼=
1

1− ρ
(1 + c1φ+ c2φ

2 + c3φ
3 + . . . ), (5)

and

np =
ρ

1− ρ

(
1 +

σp φ

κp − 3
2

)−κp+ 1
2

∼=
ρ

1− ρ
(1− b1 σp φ+ b2 σ

2
p φ

2 − b3 σ3
p φ

3 + . . . ), (6)

where c1 = 2κe−1
2κe−3 , c2 = (2κe−1)(2κe+1)

2(2κe−3)2 , c3 = (2κe−1)(2κe+1)(2κe+3)
6(2κe−3)3 ,

b1 = 2κp−1
2κp−3 , b2 = (2κp−1)(2κp+1)

2(2κp−3)2 , b3 = (2κp−1)(2κp+1)(2κp+3)

6(2κp−3)3 .

In Eqs.(1)-(4), n(α), ui, φ, pi, t, x denote the densities (α = e, p, i), ion veloc-
ity, electrostatic potential, ion pressure, the time and the space coordinate,
respectively. These dimensionless quantities are normalized as follows: the
plasma species densities by the unperturbed ion density ni0, ui by the ion

acoustic speed Cs =
√

Te
Mi

where Mi is the ion mass. Space variable x and

time t by electron Debye length and the inverse of the plasma frequency

λD =
√

Te
4πni0e2

, ωpi =
√

4πni0e2

Mi
. The electrostatic potential φ by the thermal

potential Te
e

, ion pressure p by equilibrium pressure p0 = ni0Ti. The param-

eters σi = Ti
Te

, ρ = np0
ne0

and σp = Te
Tp

are obtained due to the nondimensional
process.
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3 The derivation of K-dV equation:

We apply the reductive perturbation technique to derive the K-dV equation.
According to this technique the independent variables x, t are stretched as
(Mehdipoor [20].

ξ = ε1/2(x− vpst), τ = ε3/2t, (7)

where ε is a real parameter and satisfies ε � 1, vps is the phase speed of the
IA to be derived later. We expanded the depend variables as

ni(x, t)
ui(x, t)
pi(x, t)
φ(x, t)

 =


1
u0
1
0

+
∞∑
q=0

εq+1


nq+1(ξ, τ)
uq+1(ξ, τ)
pq+1(ξ, τ)
φq+1(ξ, τ)

 , (8)

Substituting from Eqs.(5-8) into Eqs.(1-4) and collecting the terms with similar
power of ε, the first order is
n1 = Aφ1, u1 = (vps − u0)Aφ1, p1 = 3Aδ1φ1,
with phase velocity,

vps = u0 ±
√

3σiAδ1 + 1

Aδ1
. (9)

For the next order of ε, we get

(u0 − vps)
∂n2

∂ξ
+
u2
∂ξ

= −∂n1

∂τ
− ∂(n1u1)

∂ξ
,

(u0 − vps)δ1
∂u2
∂ξ

+ σi
∂p2
∂ξ

+
∂φ2

∂ξ
= −δ1

∂u1
∂τ

+ (vps − u0)δ1 n1
∂u1
∂ξ

−(1 +
9

2
U2
ri +

75

8
U4
ri − vps δ2)u1

∂u1
∂ξ
− n1

∂φ1

∂ξ
,

(u0 − vps)
∂p2
∂ξ

+ 3δ1
∂u2
∂ξ

= −∂p1
∂τ
− 3δ1 p1

∂u1
∂ξ
− u1

∂p1
∂ξ
− 3u1δ2

∂u1
∂ξ

,

n2 − Aφ2 = B φ2
1 −

∂2φ1

∂ξ2
. (10)

Where A = c1+b1 ρ σp
1−ρ , B =

c2−b2 ρ σ2
p

1−ρ , δ1 = 1 + 3
2
U2
ri + 15

8
U4
ri (with assuming

Uri = u0
C

), δ2 = 3Uri
C

+
15U3

ri

2C
.

Finally from Eqs. (9) and (10) we derived the nonlinear evolution K-dV equa-
tion as

∂φ1

∂τ
+ q1 φ1

∂φ1

∂ξ
+ q2

∂3φ1

∂ξ3
= 0. (11)
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In the above equation, q1 and q2 are the coefficients of nonlinear and dispersion
terms. Which are given by

q1 =
[A2(δ2(vps − u0)− δ1)− 3A3δ21σi(1− 5δ1)− 2Bδ1]

2A2δ21(vps − u0)
,

q2 =
1

2A2δ1(vps − u0)
. (12)

Here we will introduce a new viewpoint about the bifurcation discussion of
dynamical system of K-dV equation in highly relativistic ions, therefore we can
determine the kinds and stability of solutions closed the equilibrium points of
these physical situations before solve it.

4 Bifurcation analysis of K-dV equation:

In this section, we transform the K-dV equation to autonomous dynamical
system by replacing the independent variables ξ, τ to new variable χ = ξ−V τ ,
where V is a constant speed (normalized by ion acoustic speed). Integrating
the obtained ordinary differential equation (ODE) with respect to ξ and the
constant of integration equals zero by substitution the boundary conditions
dφ1
dχ
→ 0, d

2φ1
dχ2 → 0, φ1 → 0 as χ→ ±∞ . We get the second order ODE in the

form:

−V φ1 +
q1
2
φ2
1 + q2

d2φ1

dχ2
= 0. (13)

We reduce Eq.(13) to the following an autonomous planar dynamical system :{
φ′1 = Z

Z ′ = V
q2
φ1 − q1

2q2
φ2
1.

. (14)

In the system (14), let φ′1 = g1(φ1, Z) and Z ′ = g2(φ1, Z) is Hamiltonian
system if such that g1 = ∂H

∂Z
and g2 = − ∂H

∂φ1
and the Hamiltonian function

satisfies the condition ∂g1
∂φ1

+ ∂g2
∂Z

= 0 (Chow and Hale [4], Saha and Banerjee

[28], Shahein and Wahid [35]). The system (14) has Hamiltonian function as

H(φ1, Z) =
Z2

2
+

q1
6q2

φ3
1 −

V

2q2
φ2 = h. (15)

Where h is a constant and the solutions orbits have fixed value of H along each
one. The system (14) has two equilibrium points at E1(0, 0) and E2(

2V
q1
, 0). We

use linearization technique by Jacobian matrix to determine the eigenvalues of
two equilibrium points

J =

(
0 1

V
q2
− q1

q2
φ1 0

)
.
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Then the Jacobian matrix at E1 and E2 are in the form

JE1 =

(
0 1
V
q2

0

)
,

JE2 =

(
0 1
−V
q2

0

)
.

Let now discus two cases.
First case for V

q2
> 0 [at V > 0 and (vps − u0) has positive square root in Eq.

(9)]:

we have two real and distinct eigenvalues λ = ±
√

V
q2

at E1 then we classify E1

as an unstable saddle point, see figure 1(a). Also at E2 the eigenvalues are λ =

±i
√

V
q2

then we classify E2 as a stable center point, see figure 1(b). The phase

portrait has one homoclinic orbit consists from saddle at E1 and center at E2

and a family of periodic orbits around the center point as shown in figures 1(c-
e). The phase portrait of homoclinic orbits in figure 1(c-e) indicates a solitary
and a periodic traveling wave solutions of K-dV equation. Substantially, the
effect of increasing of Uri plays an essential rule in decreasing the numbers
of centers as Uri increases, see figures 1(c-e). This indicates that an increase
in the value of Uri reduces the value of the wave amplitude. Interestingly,
we noticed that there is a critical range of parameter 0 < σi < 0.1 where as
relativistic factor increases, the center point E2 changes its place from the right
of the saddle point E1 to its left, see figures(2). This means the wave expected
to reverse its direction of propagation as relativistic factor of ions increases
within the critical range of ion temperature.
Second case for V

q2
< 0 [at V > 0 and (vps−u0) has negative square root in Eq.

(9)]: then we have one homoclinic orbit with stable center at E1 and unstable
saddle at E2 as illustrated in figures (3). We can say that the speed sign of
(vps − u0) is a very important factor that can affect wave behavior.

5 The exact solutions of K-dV equation with

(G′/G)-expansion method:

We assume that φ1 = φ(χ) is the solution of Eq.(13) and can expressed as a
polynomial of (G′/G) as (Zhang et al. [41], Liu [18], Song and Ge [38], Abazari
[1])

φ =
r∑

m=0

am

(
G′

G

)m
, (16)

where am are constants will be determined later and r is determined by balance
between the higher order of derivatives d2φ

dχ2 and the nonlinear term φ2 in Eq.(13)
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Figure 1. Phase portraits for system (14) at (a,b) and homoclinic orbits at
(c-e) with positive value of phase velocity. The parameters are ρ = 0.2 , σp =
1.3, V = 0.59, c = 500, κe = 2.5, κp = 2.8 at different values of Uri at σi = 0.2.
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Figure 2. Phase portraits for homoclinic orbits with positive value of phase
velocity. The parameters are σi = 0.007, ρ = 0.2 , σp = 1.3, V = 0.25, c = 500,
κe = 2.5, κp = 2.8 at different values of Uri.
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Figure 3. Phase portraits for system (14) at (a,b) and homoclinic orbits at
(c-e) with negative value of phase velocity. The parameters are ρ = 0.2 , σp =
1.3, V = 0.4, c = 500, κe = 2.5, κp = 2.8 at different values of Uri at σi = 0.2.
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we get r + 2 = 2r =⇒ r = 2 so the solution will be in the form

φ = a0 + a1

(
G′

G

)
+ a2

(
G′

G

)2

, a2 6= 0, (17)

where the function G = G(χ) satisfies the second ODE equation with real
constants s1, s2

G′′ + s1G
′ + s2G = 0. (18)

We have three solutions of Eq.(18) as

(
G′

G

)
=



− s1
2

+

√
s21−4s2
2

×

(
d1 sinh(

χ
√

s21−4s2

2
)+d2 cosh(

χ
√

s21−4s2

2
)

d2 sinh(
χ
√

s21−4s2

2
)+d1 cosh(

χ
√

s21−4s2

2
)

)
, s21 − 4s2 > 0,

− s1
2

+

√
−s21+4s2

2
×

(
−d1 sin(

χ
√
−s21+4s2

2
)+d2 cos(

χ
√
−s21+4s2

2
)

d2 sin(
χ
√
−s21+4s2

2
)+d1 cos(

χ
√
−s21+4s2

2
)

)
, s21 − 4s2 < 0,

− s1
2

(
d2

d2χ+d1

)
, s21 − 4s2 = 0.

(19)
Substituting from Eq.(17) into Eq.(13) and collect similar terms of order
(G′/G) together, then we have a set of algebraic equations for a0, a1, a2 by
equating the coefficients of all terms to zero. After that by solving numerically
these equations, we have set of solutions as

a0 =
V ±

√
5(24 q22 s2(s

2
1 + 2s2) + V 2)√

5 q1
, a1 =

−12 q2 s1
q1

, a2 =
a1
s1
. (20)

a0 =
−q2(s21 + 8 s2)± V

25 q1
, a1 =

−12 q2 s1
q1

, a2 =
a1
s1
. (21)

Finally, we obtained three families of solutions for K-dV equation (13) by
substituting Eqs.(20,21) and Eq.(19) into Eq.(17), then we get three solution:
Case 1 Soliton wave solution:(hyperbolic solution if s21 − 4s2 > 0)

φ1 =
V ±

√
5(24 q22 s2(s

2
1 + 2s2) + V 2)√

5 q1
+ (
−12 q2 s1

q1
)−s1

2
+

√
s21 − 4s2

2
×

d1 sinh(
χ
√
s21−4s2
2

) + d2 cosh(
χ
√
s21−4s2
2

)

d2 sinh(
χ
√
s21−4s2
2

) + d1 cosh(
χ
√
s21−4s2
2

)

+

(
a1
s1

)

−s1
2

+

√
s21 − 4s2

2
×

d1 sinh(
χ
√
s21−4s2
2

) + d2 cosh(
χ
√
s21−4s2
2

)

d2 sinh(
χ
√
s21−4s2
2

) + d1 cosh(
χ
√
s21−4s2
2

)

2

. (22)
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Case 2 blow up solitary wave solution:(hyperbolic solution if s21 − 4s2 > 0)

φ2 =
−q2(s21 + 8 s2)± V

25 q1
+ (
−12 q2 s1

q1
)−s1

2
+

√
s21 − 4s2

2
×

d1 sinh(
χ
√
s21−4s2
2

) + d2 cosh(
χ
√
s21−4s2
2

)

d2 sinh(
χ
√
s21−4s2
2

) + d1 cosh(
χ
√
s21−4s2
2

)

+

(
a1
s1

)

−s1
2

+

√
s21 − 4s2

2
×

d1 sinh(
χ
√
s21−4s2
2

) + d2 cosh(
χ
√
s21−4s2
2

)

d2 sinh(
χ
√
s21−4s2
2

) + d1 cosh(
χ
√
s21−4s2
2

)

2

. (23)

Case 3 periodic wave solution (Trigonometric solution if s21 − 4s2 < 0)

φ3 =
−q2(s21 + 8 s2)± V

25 q1
+ (
−12 q2 s1

q1
)−s1

2
+

√
−s21 + 4s2

2
×

−d1 sin(
χ
√
−s21+4s2

2
) + d2 cos(

χ
√
−s21+4s2

2
)

d2 sin(
χ
√
−s21+4s2

2
) + d1 cos(

χ
√
−s21+4s2

2
)

+

(
a1
s1

)

−s1
2

+

√
−s21 + 4s2

2
×

−d1 sin(
χ
√
−s21+4s2

2
) + d2 cos(

χ
√
−s21+4s2

2
)

d2 sin(
χ
√
−s21+4s2

2
) + d1 cos(

χ
√
−s21+4s2

2
)

2

.(24)

6 Results and discussion :

We introduced a new point of view for studying the types and stability of solu-
tions for the K-dV equation by bifurcation of dynamical system. In this paper,
a novel study in plasma physics have been carried out of K-dV equation of an
unmagnetized plasma consists of three components superthermal electrons-
positrons and strongly relativistic ions. Now we are presenting her some im-
portant effects of plasma parameters on performing the phase portraits and
the behavior of solutions which are obtained. In case (vps−u0) > 0, the effects
of many parameters as spectral index of superthermality (2 < κe, κp < 6), rel-
ativistic factor (0 ≺ Uri ≺ 1), density ratio (0 ≺ ρ ≺ 1) of positron to electron,
temperature ratio (σp � 1) of electron to positron as well as the temperature
ratio (0 ≺ σi � 1) of ion to electron of wave on behavior of IAW have been
illustrated in 2-dimensional and 3-dimensional graphes. Figures (4,5) exhibit
declining in soliton amplitude and width due to increase in each of Uri, σp,
σi, ρ this is congruent with the results in Ref. Javidan and Saadatmand [16].
Moreover, the increase in κe, κp lead to flourish the soliton wave which make
the soliton become robust, also the wave amplitude is affected by the parame-
ter κe more than κp as figures 4(b,c),6 this is congruent with the results of Ref.
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Figure 4. The soliton wave solution with relativistic factor Uri at (a) for,
κe = κp = 2.5 and with superthermality κe, κp at (b,c) for Uri = 0.3. Other
parameters σi = 0.2, ρ = 0.2, σp = 1.3, V = 0.4, s1 = 2, s2 = 0, d1 = 1, d2 =
0.
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Figure 5. The soliton wave solution for parameters σi = 0.2, ρ = 0.2, σp =
1.3, V = 0.4, s1 = 2, s2 = 0, d1 = 1, d2 = 0, κe = κp = 2.5 at Uri = 0.4 in
(b-d).
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Figure 6. The soliton wave solution for parameters σi = 0.2, ρ = 0.2, σp =
1.3, V = 0.4, s1 = 2, s2 = 0, d1 = 1, d2 = 0 at Uri = 0.4 .
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Figure 7. The blow up solitary wave solution for parameters σi = 0.2, ρ =
0.2, σp = 1.3, V = 0.4, s1 = 2, s2 = 0, d1 = 1, d2 = 0, and Uri = 0.4 .
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Figure 8. The blow up solitary wave solution for parameters σi = 0.2, ρ =
0.2, σp = 1.3, V = 0.4, s1 = 2, s2 = 0, d1 = 1, d2 = 0, and Uri = 0.4 at
different values of κe, κp .
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Figure 9. The periodic wave solution with the interval Uri at (a) and the
nonlinear coefficient term q1 of K-dV equation with parameters σi = 0.3, ρ =
0.5, σp = 1.3, V = 0.3, s1 = 2, s2 = 0, d1 = 1, d2 = 0, and κe = 2.5, κp = 2.8
.
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El-Tantawy et al. [8]. The figures (7) show the new kind of solitary wave called
blow up solitary wave solution where this kind appears in strongly relativistic
factor up to Uri = 0.6 as figure (7a). Also as the parameters Uri, σp, σi, ρ
increase, the amplitude and width of blow up solitary wave decrease and at
higher values of these parameters the blow up wave changes into solitary wave
(Maxwellian form) this is clear in figures 7 (b-e). Both amplitude and width
of blow up solitary wave increase as superthermality index κe, κp increase as
figures (8). The periodic wave solution is appeared with relativistic factor Uri
and independent variable χ in figure (9a). It is worth to mention here that at
positive (negative) values of phase velocity in Eq.(9), we have positive (neg-
ative) values of nonlinear coefficient q1 this leads to compressive (rarefactive)
soliton for chosen parameters, see figure (9b).

7 Conclusion:

One can conclude that the derived solutions of K-dV are sensitive for relativis-
tic ion factor and superthermality of electrons and positrons. The obtained
results are helpful for basic understanding the salient features of the fully ion
acoustic nonlinear waves in laboratory plasmas as well as space environments,
where electron and positron with highly energies obeying superthermal dis-
tribution have been observed. In fact and without exaggeration, this new
perspective gives a consolidated picture not only in the stability information
of solutions but also in expecting the types of propagating wave in similar fluid
system. Bifurcation analysis gives an early prediction about the wave behavior
without having to obtain the solutions as illustrated in figures (1-3). Figures(1-
9) and obtained results play a pivotal role in elucidating the IAW structures
in epi plasma with superthermallity ep and relativistic ion that have been ev-
idenced in auroral zone and pulsar relativistic wind.
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