
Applied Mathematical Sciences, Vol. 16, 2022, no. 4, 173 - 185
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ams.2022.916763

On Stable Distribution of Multivariate Data

Phuc Ho Dang 1

Institute of Mathematics, Vietnam Academy of Science and Technology
18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

Truc Giang Vo Thi

Tien Giang University
119 Ap Bac, My Tho City, Vietnam

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2022 Hikari Ltd.

Abstract

To investigate the multidimensional distributions of stable random
vectors, the paper deals with a transformation in multidimensional
space, which turns a given stable random vector that has a positive
density function into a sub-Gaussian random vector. The result can be
used to perform a procedure of testing the stable distribution of multi-
variate data. A dataset collected from the Nasdaq stock market is used
to illustrate the proposed procedure.
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Introduction

The traditional statistical analysis methods were developed mostly under the
normality assumptions. However, normality is only a poor approximation of
reality. Whilst normal distributions are always symmetric around their mean,
most of the quantities usually concerned in empirical studies do not have sym-
metric distributions. Moreover, normal distributions do not allow heavy tails,
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which are common in the reality. Stable distributions are asymmetric heavy-
tailed extensions of normal distributions and have attracted a lot of attention
in applied research ([1], [6], [7], [9], [14], [15]). Presently, the univariate stable
distributions are accessible by several methods to estimate stable parameters
and reliable programs to compute stable densities, cumulative distribution
functions, and quantiles for stable random variables ([1], [5], [8], [11]). How-
ever, the use of the heavy-tailed models in practice has been restricted by the
lack of tools for multivariate stable distributions.

Currently, computations are more accessible for elliptically contoured sta-
ble distributions [16] which are scale mixtures of multivariate normal distri-
butions. The tools for the special class of stable distributions were applied in
several empirical studies ([6], [10]). However, the method is available only for
a narrow subclass of multivariate stable distributions. The problem of mul-
tivariate distribution function calculation for stable random vectors remains
open in the general cases. Besides, in many studies on portfolio selection and
asset allocation, analysts must determine the distribution function of a linear
combination of several stable random variables. Thus, the problem of testing
the stability in distribution of a random vector plays an important role in ap-
plication. That convinces the aim of this paper to create a new procedure of
goodness-of-fit testing for a broader family of multivariate stable distributions.

The rest of the paper is organized as follows. Section 1 presents the main
notation and some concepts related to multidimensional stable distributions.
Section 2 is devoted to creating a bijective transformation in multidimensional
space, that turns a given stable random vector into a sub-Gaussian random
vector. Section 3 presents the procedure based on the result obtained in Section
2 to conduct the goodness-of-fit testing on stable distribution of multivariate
data. An example of dataset collected from the Nasdaq stock market is used
to illustrate the practicability of the procedure.

1 Preliminaries

Given a random vector X = (X1, ..., Xd) taking values in Euclidean space
Rd, its cumulative distribution function (cdf or distribution) and probability
density function (pdf hereafter) are denoted by FX and fX, respectively. The
coordinates X1, ..., Xd are called marginals, simultaneously FX1 , ..., FXd

and
fX1 , ..., fXd

are called marginal cdf ’s and marginal pdf ’s of X, respectively.
The characteristic function ϕX of X is defined by

ϕX(t) := E exp{i〈X, t〉} ,

for t = (t1, ..., td) ∈ Rd, where 〈x, t〉 = x1t1 + ... + xdtd is the inner product
between x = (x1, ..., xd) ∈ Rd and t.
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A random vector X has stable distribution if for every pair (X
′
,X

′′
) of

independent random vectors identically distributed as X, for every pair (a, b)
of positive numbers, there always exist a positive number c and a vector d ∈ Rd

such that aX
′
+ bX

′′
has the same distribution as cX + d. It is shown that

the constant c is uniquely determined by the pair (a, b). Namely, there is a
number α ∈ (0; 2] called stability index that satisfies aα + bα = cα. Then X is
said to be α-stable. It is well known (Theorem 2.3.1[16]) that X is determined
by a spectral measure Λ (a finite Borel measure on the unit sphere Sd in Rd)
and a shift vector δ = (δ1, ..., δd) ∈ Rd through the representation

ϕX(t) = exp(−
∫
Sd
ψα(〈s, t〉)Λ(ds) + i〈δ, t〉) , (1.1)

where

ψα(u) =

{
|u|α(1− isign(u) tan πα

2
) α 6= 1

|u|(1 + i 2
π
sign(u) ln |u|) α = 1.

We denote X ∼ S(α; Λ; δ) to mark (1.1) is valid.

Especially, every α-stable random variable has a characteristic function of
the form

ϕX(u) = E exp(iuX) =

{
exp(−γα|u|α[1− iβ(tan πα

2
)sign(u)] + iδu) α 6= 1

exp(−γ|u|[1 + iβ 2
π
sign(u) ln |u|] + iδu) α = 1,

with fixed β ∈ [−1; 1], γ > 0 and δ ∈ R. Then the parameters α, β, γ, and δ
uniquely determine the distribution of X, we write X ∼ S(α; β; γ; δ). Usually,
α is called the stable index, meanwhile β, γ and δ are named as the skewness,
the scale and the location parameters of X, respectively.

2 Stable random vector and sub-Gaussian ran-

dom vector

Below we investigate a method to create a transformation in multidimensional
space, which turns a given stable random vector into a sub-Gaussian random
vector. For fixed α ∈ (0, 2) let A ∼ S(α/2; 1; (cos πα

4
)2/α; 0) be a positive α/2 -

stable random variable and G = (G1, ..., Gd) be a zero-mean Gaussian vector
independent of A. Then the random vector

X = (A1/2G1, ..., A
1/2Gd)

is called a sub-Gaussian random vector. By virtue of Theorems 1.3.1 and 2.1.5
[16], X is an α-stable random vector.

It is clear that marginals of every sub-Gaussian random vector are symmet-
ric. Therefore, stable random vectors with symmetric marginals are worthy
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to be considered. The copula tool can be used for that. For a given cdf
G : R → [0; 1] let G←(y) = inf{x : G(x) ≥ y} be its generalized inverse. The
copula of r.v. X, denoted by CX, can be defined by

CX(t1, ..., td) = FX(F←X1
(t1), ..., F←Xd

(td)) ,

for 0 ≤ t1, ..., td ≤ 1. Then we have (see also Sklar’s Theorem [17])

FX(x1, ..., xd) = CX(FX1(x1), ..., FXd
(xd)) , (2.1)

for x1, ..., xd ∈ R̄ = [−∞; +∞]. Moreover, when the random vector X is
continuous, its pdf fX and marginal pdf’s fX1 , ..., fXd

exist, simultaneously
F←Xk

= F−1
Xk

for k = 1, ..., d. From (2.1) it can be easy to prove that if C is a
copula of any stable random vector and X1, ..., Xd are stable random variables
then F (x1, ..., xd) = C(FX1(x1), ..., FXd

(xd)) is a cdf of a stable random vector.
It is evident that the stability of a random vector is invariant under all

linear rotations around the origin 0 of Rd. The next lemma confirms that
the statement remains true for symmetric stable random vectors and some
”non-linear rotations” around the origin 0.

Lemma 2.1. Let α ∈ (0; 2) and an α-stable random vector Z = (Z1, ..., Zd) be
symmetric, (R,Θ1, ...,Θd−1) = B(Z). Suppose that there exists an invertible
differentiable transformation Q : Id−1 → Id−1 such that the random vector Y =
D(R,Q(Θ1, ...,Θd−1)) is symmetric. Then Y has also an α-stable distribution.

Proof. From the symmetry of Z and Y we see their characteristic function ϕZ

and ϕY taking only real values and

ϕZ(t) = E cos〈Z, t〉 , ϕY(t) = E cos〈Y, t〉 , (2.2)

for t = (t1, ..., td) ∈ Rd, where 〈z, t〉 = z1t1 +...+zdtd for z = (z1, ..., zd). Mean-
time, the spectral representation of symmetric stable multivariate distributions
(see e.g. Theorem 2.4.3 [16]) confirms that

ϕZ(t) = exp(−
∫
Sd
|〈s, t〉|αΛ(ds)) (2.3)

with a spectral measure Λ on Sd. Looking at the polar representations

z1 = r cos θ1 , t1 = u cos η1 ,
z2 = r sin θ1 cos θ2 , t2 = u sin η1 cos η2 ,
. . . . . .

zd−1 = r sin θ1... sin θd−2 cos θd−1 , td−1 = u sin η1... sin ηd−2 cos ηd−1 ,
zd = r sin θ1... sin θd−2 sin θd−1 , td = u sin η1... sin ηd−2 sin ηd−1 ,
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where 0 ≤ θ1 < π, ..., 0 ≤ θd−2 < π, 0 ≤ θd−1 < 2π; 0 ≤ η1 < π, ...,
0 ≤ ηd−2 < π, 0 ≤ ηd−1 < 2π and r = ||z||; u = ||t||, we see

〈z, t〉 = ru · v(θ,η) (2.4)

and the function v depends only of the arguments θ = (θ1, ..., θd−1), η =
(η1, ..., ηd−1) from Id−1. The existence of pdf fZ of the stable random vector Z
and the assumption that Q is differentiable imply the pdf fY of the random
vector Y exists, that yields

f ∗Y(r, θ1, ..., θd−1) = f ∗Z(r,Q(θ))JQ ,

where f ∗ means the polar coordinates form of a multivariate function f and JQ
denotes the Jacobian of Q, that is dependent only on the arguments θ1, ..., θd−1.
Therefore (2.2) can be rewritten as

ϕZ(t) =

∫
Id−1

∫ ∞
0

cos(ru · v(θ,η))f ∗Z(r,θ)drdθ (2.5)

and

ϕY(t) =

∫
Id−1

∫ ∞
0

cos(ru · v(Q(θ),η))f ∗Z(r,Q(θ))JQdrdθ . (2.6)

Simultaneously, (2.3) implies

ϕZ(t) = exp(−
∫
Id−1

|u · v(θ,η)|αΛ∗(dθ)) ,

where Λ∗ denotes the polar representation form of Λ. Combining the above
equality with (2.4), (2.5), and (2.6), it is easily pointed out that

ϕY(t) = exp(−
∫
Id−1

|u · v(θ,η)|αΛ1
∗(dθ)) = exp(−

∫
Sd
|〈s, t〉|αΛ1(ds))

for some spectral measure Λ1 defined on Sd. Consequently, the random vector
Y is α-stable by virtue of Theorem 2.4.3 [16].

In the following theorem we build up invertible transformations that turn
random vectors with stable distribution into random vectors with sub-Gaussian
stable distribution.

Theorem 2.2. Let X be a random vector from a stable distribution in Rd such
that fX is positive in whole Rd. Then there exists an invertible differentiable
transformation K : Rd → Rd such that the random vector

Y = K(X) ,

is a sub-Gaussian random vector.
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Proof. Let X = (X1, ..., Xn) be a stable random vector of marginals Xk ∼
S(α; βk; γk; δk), 0 < α < 2; −1 < βk < 1; 0 < γk < ∞; −∞ < δk < ∞,
k = 1, ..., d. Let X0 ∼ S(α; 0; 1; 0) denote a standard stable random variable.
From the well known-fact (Property 1.2.14 [16]) that if a stable random variable
has skewness parameter different from ±1 then its cdf is positive on whole R,
the pdf’s fX1 , ..., fXd

and fX0 are positive on whole R, the cdf’s FX1 , ..., FXd

and FX0 are strictly increasing. Then the functions Tk : R → R, k = 1, ..., d,
defined by Tk(u) = F−1

X0
(FXk

(u)), are strictly increasing functions. Besides,
T ′k(u) = fXk

(u)/fX0(Tk(u)), k = 1, ..., d, are positive functions. This implies
fX0(Tk(u))T ′k(u)du = fXk

(u)du, that yields

FX0(Tk(u)) =

Tk(u)∫
−∞

fX0(Tk(u))T ′k(u)du =

u∫
−∞

fXk
(u)du = FXk

(u) . (2.7)

On the other hand, for every t ∈ R we have

FTk◦Xk
(t) = P{ω : Tk(Xk(ω)) ≤ t} = P{ω : Xk(ω) ≤ T−1

k (t)} = FXk
(T−1

k (t)) .

Compared the above with (2.7), putting t = Tk(u), we get FX0(t) = FTk◦Xk
(t) .

This confirms the two random variables X0 and Tk ◦Xk have the same distri-
bution. Then, by virtue of Proposition 5.6 [2] and the remark after (2.1), the
random vector Z = (T1(X1), ..., Td(Xd)) is stable with symmetric S(α; 0; 1; 0)-
distributed marginals.

We attempt to design an invertible transformation U : Rd → Rd such

that the random vector U(Z) has isotropic distribution, which means U(Z)
d
=

MU(Z) for all linear rotations M around the origin 0. To construct the desired
transformation U , we use several times the couple of the polar representation
mappings B = (B0, B1, ..., Bd−1) and D = (D1, ..., Dd) defined by (2.8) and
(2.9) as the follows. For x = (x1, ..., xd) ∈ Rd \ {0}, let

r = B0(x) = ||x|| =
√
x2

1 + · · ·+ x2
d ,

θi = Bi(x) = arccot

(
xi/
√
x2
i+1 + · · ·+ x2

d

)
, i = 1, 2, ..., d− 2

θd−1 = Bd−1(x) = 2arccot

([
xd−1 +

√
x2
d−1 + x2

d

]
/xd

)
.

(2.8)

Then B = (B0, B1, ..., Bd−1) : Rd \ {0} → R+ × Id−1 is a bijective mapping,

Id−1 := [0, π)× · · · × [0, π)︸ ︷︷ ︸
d−2

×[0, 2π) ⊂ Rd−1 .
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Inversely, each point x ∈ Rd \ {0} is of the form

x1 = D1(r, θ1, θ2, ..., θd−1) = r cos θ1 ,
x2 = D2(r, θ1, θ2, ..., θd−1) = r sin θ1 cos θ2 ,
. . .
xd−1 = Dd−1(r, θ1, θ2, ..., θd−1) = r sin θ1 sin θ2... sin θd−2 cos θd−1 ,
xd = Dd(r, θ1, θ2, ..., θd−1) = r sin θ1 sin θ2... sin θd−2 sin θd−1 ,

(2.9)

with 0 ≤ θ1 < π, ..., 0 ≤ θd−2 < π, 0 ≤ θd−1 < 2π. Then the mapping
D = (D1, ..., Dd) : R+ × Id−1 → Rd \ {0} is the inverse transformation of B.

Let e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., ed = (0, 0, 0, ..., 1) be the
unit vectors in the basis of the Euclidean space Rd. Let P(ei,ej) denote the
two-dimensional plan generated by {ei, ej} for 1 ≤ i, j ≤ d − 1. It is clear
that every shift (modulo 2π) of θd−1 in the interval [0; 2π) corresponds to one
rotation of D(r, θ1, ..., θd−1) around the origin in P(ed−1,ed).

Firstly, considering (R,Θ1, ...,Θd−1) = B(Z), we see the random variable
FΘd−1

◦ Θd−1 is uniformly distributed on [0; 1). Consequently, the random
variable 2πFΘd−1

◦ Θd−1 is uniformly distributed on [0; 2π), its distribution is
invariant against every shift (modulo 2π) in the interval [0; 2π). Therefore, the
distribution of the new defined random vector

U (1)(Z) = Z(1) = (Z
(1)
1 , Z

(1)
2 , ..., Z

(1)
d ) := D(R,Θ1, ...,Θd−2, 2πFΘd−1

◦Θd−1)

is symmetric and invariant under all rotations around the origin in P(ed−1,ed).

In the second step, we change the coordinates of (Z
(1)
1 , Z

(1)
2 , ..., Z

(1)
d ) by

moving the first coordinate to the end and shifting the others ahead by one
place (that means the basis (e1, e2, ..., ed−1, ed) in Rd is replaced by the basis
(e2, e3, ..., ed, e1)). With the new random vector, we get

(R,Θ
(1)
1 , ...,Θ

(1)
d−2,Θ

(1)
d−1) = B(Z

(1)
2 , Z

(1)
3 , ..., Z

(1)
d , Z

(1)
1 ) .

The second transformation U (2)(Z(1)) = Z(2) is defined by

Z(2) = (Z
(2)
1 , Z

(2)
2 , ..., Z

(2)
d ) := D(R,Θ

(1)
1 , ...,Θ

(1)
d−2, 2πFΘ

(1)
d−1
◦Θ

(1)
d−1) .

Due to the fact that the random variable 2πF
Θ

(1)
d−1
◦ Θ

(1)
d−1 is uniformly dis-

tributed on [0; 2π), by a similar argument as the above, we can confirm that
the distribution of the random vector Z(2) is symmetric and invariant under
all rotations around the origin in P(ed,e1). Simultaneously, Z(2) is also invari-
ant under all rotations around the origin in P(ed−1,ed) because Z(1) is invariant
under all rotations around the origin in P(ed−1,ed).

Continuing the above process to the d -th step, the basis (ed−1, ed, ..., ed−3, ed−2)
in Rd is replaced by the basis (ed, e1, ..., ed−2, ed−1), the random vector obtained
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after the (d -1)-th step (Z
(d−2)
1 , Z

(d−2)
2 , ..., Z

(d−2)
d−1 , Z

(d−2)
d ) is rearranged into the

new random vector (Z
(d−2)
2 , Z

(d−2)
3 , ..., Z

(d−2)
d , Z

(d−2)
1 ). The polar representation

of the new random vector is

B(Z
(d−2)
2 , ..., Z

(d−2)
d , Z

(d−2)
1 ) = (R,Θ

(d−2)
1 , ...,Θ

(d−2)
d−2 ,Θ

(d−2)
d−1 ) .

Applying D to the polar representation random vector replaced the last coor-
dinate Θ

(d−2)
d−1 by 2πF

Θ
(d−2)
d−1
◦Θ

(d−2)
d−1 , we have U (d−1)(Z(d−2)) = Z(d−1), where

Z(d−1) = (Z
(d−1)
1 , ..., Z

(d−1)
d ) = D(R,Θ

(d−2)
1 , ...,Θ

(d−2)
d−2 , 2πF

Θ
(d−2)
d−1
◦Θ

(d−2)
d−1 ) .

Then it is clear that the random vector Z(d−1) has symmetric distribution. For
the same reason as presented above, we can conclude the distribution of the
random vector Z(d−1) is invariant under every two-dimensional rotation around
the origin in P(ed−2,ed−1). Consequently, the distribution is invariant under ev-
ery two-dimensional rotation around the origin in each of the two-dimensional
plans P(ed−1,ed),P(ed,e1), ...,P(ed−2,ed−1). This confirms the fact that the distribu-
tion of the random vector Z(d−1) is invariant under all linear rotations around
the origin 0 in the whole Rd, which means the random vector has isotropic
distribution.

Let denote by V the transformation of coordinates’ rearrangement in Rd

such that V (xd, x1, ..., xd−2, xd−1) = (x1, x2, .., xd−1, xd) and define

U = V ◦ U (d−1) ◦ U (d−2) ◦ ... ◦ U (2) ◦ U (1).

Then we see all the transformations U (1), U (2), ..., U (d−1) are essentially based
on the random variables defined in Id−1. That implies the existence of an
invertible differentiable transformation Q : Id−1 → Id−1 such that U = D ◦Q ◦
B. Besides, the above argument ensures that the random vector Y = U(Z) =
U(T (X)) is an isotropic random vector. This together with Lemma 2.1 show
Y is a sub-Gaussian random vector. Therefore, we can confirm K = U ◦ T is
the desired transformation.

3 Application to test on the stable distribu-

tion of multivariate data

This section presents a procedure of combining the result of Theorem 2.1 and
the Cramér - von Mises goodness-of-fit test based on the Kendall functions [3,
4, 7] to check the stable distribution of multivariate data. The transformation
K : Rd → Rd determined by Theorem 2.1 turns a data set extracted from
a multivariate stable distribution with positive density function into a new
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data set that has sub-Gaussian multivariate distribution. Then, a suitably
tailored non-parametric test of Cramér - von Mises type can be used to check
the goodness-of-fit of the transformed data set to sub-Gaussian multivariate
distribution, and indirectly to check the stability of the original distribution.

Let x = {xij : i = 1, 2, ..., d; j = 1, 2, ..., n} be a sample dataset collected
from a random vector X = (X1, ..., Xd). By using Theorem 2.1, a procedure
based on Cramér - von Mises type of tests based on the Kendall functions to
test the hypothesis of stable distribution of the random vector can be made
by the following steps:

Step 1. For i = 1, 2, ..., d, estimate the stable parameters (αi; βi; γi; δi) of
the data marginal xi := {xij : j = 1, 2, ..., n}. The hypothesis test aims to
check if the random vector X is ᾱ-stable with

ᾱ =
(α1 + α2 + ...+ αd)

d
.

Step 2. Use the operator K defined by Theorem 2.1 to get

y = {yij : i = 1, 2, ..., d; j = 1, 2, ..., n} ,

where
y = K(x) = U(T (x)).

Step 3. Generate a hypothetical dataset

y(0) = {y(0)
ij : i = 1, 2, ..., d; j = 1, 2, ..., n}

that is the dataset extracted from the random vector with sub-Gaussian ᾱ-
stable distribution Y∗ = A1/2G (see Subsection 2.2 [13]), where G ∼ N(0; I)
is a Gaussian random vector with expectation 0 and covariance matrix I, the
unit matrix of the size d × d, A ∼ S(ᾱ/2; 1; (cos(πᾱ/4))2/ᾱ; 0), A and G are
independent. We denote Y∗ = (Y ∗1 , Y

∗
2 , ..., Y

∗
d ).

Step 4. For k = 1, 2, ..., n, let

Mk =
#{j 6= k : y

(0)
1j < y

(0)
1k , y

(0)
2j < y

(0)
2k , ..., y

(0)
dj < y

(0)
dk }

n
.

Based on the formula of the Kendall functions [12] of the random vector

KY∗(t) = P(FY∗(Y
∗

1 , Y
∗

2 , ..., Y
∗
d )) ≤ t) ,

to estimate the values of the Kendall function at Mk for the hypothetical
dataset and the transformed sample dataset,

Ky(0)(Mk) =
#{j : F̄y(0)(y

(0)
1j , y

(0)
2j , ..., y

(0)
dj ) ≤Mk}

n
,
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Ky(Mk) =
#{j : F̄y(y1j, y2j, ..., ydj) ≤Mk}

n
,

where F̄ denotes the empirical distribution function. Use the above values of
the Kendall function to determine the test statistic

D =
n∑
k=1

(Ky(0)(Mk)−Ky(Mk))
2 .

Step 5. Apply the Monte-Carlo sampling procedure by repeating Step 4 to
construct 1000 hypothetical datasets

y(m) = {y(0)
ij : i = 1, 2, ..., d; j = 1, 2, ..., n} , m = 1, 2, ..., 1000 ,

then repeatedly conduct Step 4 with the transformed sample dataset y replaced
by each of the hypothetical datasets to get the values

dm =
n∑
k=1

(Ky(0)(Mk)−Ky(m)(Mk))
2 .

With a given probability value p ∈ (0; 1), let q1−p be the (1 − p)-quantile
of the set {dm,m = 1, 2, ..., 1000} (usually p is taken equal to 0.1, 0.05, 0.01,
0.005, or 0.001). Set Lp = q1−p as the critical value of test. Compare the test
statistic D to the critical value Lp. Reject the hypothesis H if D ≥ Lp and
accept the hypothesis if D < Lp. The test procedure completes.

In the following we present two examples of the application of the above
goodness-of-fit test procedure to examine the multivariate stable distribution
of the daily return data of Nasdaq Finance. The daily return data from
the 10 stocks FA (Facebook); AMC (AMC Entertainment Holdings); AXP
(American Express); NFLX (Netflix); ZM (Zoom); JNJ (Johnson & Johnson);
XOM (Exxon Mobil Corporation Common); FB (Meta Platforms); HD (Home
Depot); and PPG (PPG Industries), contain a sample from 22/4/2019 to
31/12/2020 to imply 430 observations. Continuously compounded percentage
returns are considered, i.e. daily returns are measured by the log-differences
of closing pricing multiplied by 100.

Example 1. Concerning the 5-dimensional data of the stocks FA; AMC; AXP;
NFLX; and ZM, the functions McCullochParametersEstim and ks.test in the R
software package are used to estimate the stable parameters of each coordinate,
and then to verify the hypothesis of stable distribution goodness-of-fit, with ᾱ
(the average of the five values of α) taken as the common shape parameter for
all marginals. The results are presented in Table 1.
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Table 1. Stable parameters of the marginals NFLX, ZM, AMC,
AXP, and FA

Coordinate α ᾱ β γ δ p-value
X1 (NFLX) 1.771 1.478 -0.149 1.550 0.006 0.5699
X2 (ZM) 1.461 1.478 0.000 2.090 -0.169 0.3648
X3 (AMC) 1.392 1.478 0.046 2.719 -0.264 0.6843
X4 (AXP) 1.388 1.478 -0.152 1.128 0.029 0.6843
X5 (FA) 1.378 1.478 0.134 1.229 1.229 0.5699

In Table 1, all the p-values are greater than 0.05, indicate all coordinate
data fit to the stable distributions S(ᾱ; β; γ; δ) with the corresponding param-
eters. Simultaneously, all the skewness parameters β are different from ±1.
Then we conduct Step 2 followed by Step 3, Step 4 and Step 5 to get the test
statistic D = 26.4866 and the test critical values represented in Table 2.

Table 2. Test critical values on sub-Gaussian 1.478-stable
distribution in R5

Significance p 0.1 0.05 0.01 0.005 0.001
Critical value Lp 87.6010 126.6208 188.3399 236.3742 302.8049

Because the test statistic D = 26.4866 is smaller than the critical values in
Table 2, the hypothesis H is accepted and we can conclude that the returns’
dataset of NFLX, ZM, AMC, AXP, and FA fits to the 5-dimensional ᾱ-stable
distribution.

Example 2. Regarding the 5-dimensional data of the stocks JNJ; XOM; FB;
HD; and PPG, we proceed with the same procedure as that of Example 1. The
functions McCullochParametersEstim and ks.test in the R software package
are used in the first step to estimate the stable parameters and to check the
stability of marginal distributions, giving the results in Table 3.

Table 3. Stable parameters of the marginals JNJ, XOM, FB, HD,
and PPG

Coordinate α ᾱ β γ δ p-value
X1 (JNJ) 1.385 1.4444 -0.313 0.642 0.098 0.2462
X2 (XOM) 1.329 1.4444 0.061 1.146 -0.129 0.1847
X3 (FB) 1.580 1.4444 -0.264 1.261 0.127 0.2821
X4 (HD) 1.465 1.4444 -0.150 0.808 0.110 0.6843
X5 (PPG) 1.463 1.4444 -0.003 0.953 0.083 0.8900

All the p-values In Table 3 are greater than 0.05, confirming the ᾱ-stability
of all marginal distributions of the concerned data, where ᾱ = 1.4444. Then
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Step 2, Step 3, Step 4 and Step 5 of the proposed procedure are sequentially
proceeded to provide the test statistic D = 342.6804 and Table 2 containing
the test critical values of the test on sub-Gaussian distribution in R5.

Table 4. Test critical values on sub-Gaussian 1.444-stable
distribution in R5

Significance p 0.1 0.05 0.01 0.005 0.001
Critical value Lp 115.2128 131.7771 168.7637 173.2055 186.3036

In this example, the test statistic D = 342.6804 is greater than all crit-
ical values in Table 3, therefore we can realize that the returns’ dataset of
JNJ, XOM, FB, HD, and PPG does not fit to the 1.4444-stable 5-dimensional
distribution.
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Tailed Data, Birkhäuser, Boston, 1998.

[2] P. Embrechts, F. Lindskog and A. McNeil, Modeling Dependence with Cop-
ulas and Applications to Risk Management, Handbook of Heavy Tailed Dis-
tributions in Finance, 2003, ed. Rachev S., Elsevier, Chapter 8, 2001, 329–
384. https://doi.org/10.1016/b978-044450896-6.50010-8

[3] C. Genest, J.-F. Quessy and B. Rémillard, Goodness-of-fit procedures for
copula models based on the probability integral transformation, Scand. J.
Statist., 33 (2006), 337–366.
https://doi.org/10.1111/j.1467-9469.2006.00470.x

[4] C. Genest and L.-P. Rivest, Statistical inference procedures for bivariate
Archimedean copulas, J. Amer. Statist. Assoc., 88 (1993), 1034–1043.
https://doi.org/10.1080/01621459.1993.10476372

[5] S. M. Kogon and D. B. Williams,Characteristic function based estimation of
stable parameters, in Adler R., Feldman R. and Taqqu M. (eds.) A Practical
Guide to Heavy Tailed Data, Birkhäuser, Boston, MA 1998, 311–335.
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