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Abstract

In this paper, we investigate the existence of solutions for a non-
local integral boundary value problem of involving right Caputo and
left Riemann-Liouville fractional derivatives coupled system. Existence
and uniqueness results for the given problem are derived with the aid of
Leray-Schauder’s alternative and Banach’s contraction principle. The
existence and uniqueness result is elaborated with the aid of an example.
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1 Introduction

Fractional differential equations have gained importance due to their numerous
applications in many fifields of science and engineering, diffusive transport akin
to diffusion, rheology, probability, electrical networks, etc[1 − 6]. The study
of coupled systems of fractional-order differential equations is found to be of

1This work is supported by the Scientific Research Fund of Hunan Provincial Education
Department (No: 21C0373).

2Corresponding author
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great value and interest in view of the occurrence of such systems in a variety
of problems of applied nature[7− 13].

In [14], the authors disscuss the existence of coupled fractional differential
system involving right Caputo and left Riemann-Liouville fractional deriva-
tives, 

cDα
1−D

β
0+x (t) = f (t, x (t) , y (t)) , t ∈ J := [0, 1] ,

cDp
1−D

q
0+y (t) = g (t, x (t) , y (t)) , t ∈ J := [0, 1] ,

x (0) = x
′
(0) = 0, x (1) = γy (η) , 0 < η < 1,

y (0) = y
′
(0) = 0, y (1) = δx (θ), 0 < θ < 1,

where cDα
1−,cDp

1− denote the right Caputo fractional derivatives of order α, p ∈
(1, 2] and Dβ

0+,Dq
0+ denote the left Riemann-Liouville fractional derivatives of

order β, q ∈ (0, 1], f, g : J × R × R → R are given continuous functions and
γ, δ ∈ R are appropriate constants.

This motivates us to consider the following nonlinear fractional differential
equations with nonlocal integral boundary conditions:

cDα
1−D

β
0+x (t) = f (t, x (t) , y (t)) , t ∈ [0, 1] ,

cDp
1−D

q
0+y (t) = g (t, x (t) , y (t)) , t ∈ [0, 1] ,

x (0) = x
′
(0) = 0, x(ξ) = a

∫ η
0

(η−s)ϕ−1

Γ (ϕ)
x (s) ds, ϕ > 0,

y (0) = y
′
(0) = 0, y(δ) = b

∫ θ
0

(θ−s)τ−1

Γ (τ)
y (s) ds, τ > 0,

(1.1)

where cDα
1−,cDp

1− denote the right Caputo fractional derivatives of order

α, p ∈ (1, 2] and Dβ
0+,Dq

0+ denote the left Riemann-Liouville fractional deriva-
tives of order β, q ∈ (0, 1], f, g : [0, 1] × R × R → R are given continuous
functions, a, b are real constants, and 0 < η < ξ < 1, 0 < θ < δ < 1.

The rest of the contents of the paper is organized as follows. In Section 2,
we give some definitions and lemmas. In Section 3, we give the main results,
the first result based on Leray-Schauder’s alternative, the second result based
on Banach’s contraction principle. Finally, we provide an example to illustrate
our results.

2 Preliminaries

Before presenting an auxiliary lemma, we recall some basic definitions of frac-
tional calculus.

Definition 2.1. ([15, 16]) We define the left and right Riemann-Liouville frac-
tional integrals of order α > 0 of a function g : (0,∞)→ R respectively as

Iα0+g (t) =

∫ t

0

(t− s)α−1

Γ (α)
g (s) ds, (2.1)
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Iα1−g (t) =

∫ 1

t

(s− t)α−1

Γ (α)
g (s) ds, (2.2)

provided the right-hand sides are point-wise defined on (0,∞) , where Γ is the
gamma function.

Definition 2.2. ([15, 16]) The left Riemann-Liouville fractional derivative and
the right Caputo fractional derivative of order α > 0 of a continuous function
g : (0,∞)→ R such that g ∈ Cn ((0,∞) ,R) are respectively given by

Dα
0+g (t) =

dn

dtn
(
In−α0+ g

)
(t) ,

cDα
1−g (t) = (−1)n In−α1− g(n) (t) ,

where n− 1 < α < n.

To define the solution for the problem (1.1), we use the following lemma.
For the reader’s convenience, we outline it’s proof.

Lemma 2.3. Let h, k ∈ C ([0, 1],R),the solution of the linear fractional dif-
ferential system supplemented

cDα
1−D

β
0+x (t) = h (t) , t ∈ [0, 1] ,

cDp
1−D

q
0+y (t) = k (t) , t ∈ [0, 1] ,

x (0) = x
′
(0) = 0, x(ξ) = a

∫ η
0

(η−s)ϕ−1

Γ (ϕ)
x (s) ds, ϕ > 0,

y (0) = y
′
(0) = 0, y(δ) = b

∫ θ
0

(θ−s)τ−1

Γ (τ)
y (s) ds, τ > 0,

(2.3)

is equivalent to a system of integral equations given by

x (t) = Iβ0+I
α
1−h (t) +

(β + 2) tβ+1

A

[
Iβ0+I

α
1−h (ξ)− a

∫ η

0

(η − s)ϕ−1

Γ (ϕ)
Iβ0+I

α
1−h (s) ds

]
,

(2.4)

y (t) = Iq0+I
p
1−k (t) +

(q + 2) tq+1

B

[
Iq0+I

p
1−k (δ)− b

∫ θ

0

(θ − s)τ−1

Γ (τ)
Iq0+I

p
1−k (s) ds

]
,

(2.5)

where A = aηβ+2 − (β + 2) ξβ+1 and B = bθq+2 − (q + 2) δq+1.

Proof. We first apply the right fractional integrals Iα1−,Ip1− to the fractional

differential equations in (2.3) and then the left fractional integrals Iβ0+,Iq0+ to
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the resulting equations, and using the properties of Caputo and Riemann-
Liouville fractional derivatives, we get

x (t) = Iβ0+
(
Iα1−h (t) + c0 + c1t

)
+ c2t

β−1

= Iβ0+I
α
1−h (t) + c0

tβ

Γ (β + 1)
+ c1

tβ+1

Γ (β + 2)
+ c2t

β−1, (2.6)

y (t) = Iq0+
(
Ip1−k (t) + d0 + d1t

)
+ d2t

q−1

= Iq0+I
p
1−k (t) + d0

tq

Γ (q + 1)
+ d1

tq+1

Γ (q + 2)
+ d2t

q−1. (2.7)

Using the conditions x(0) = 0, x
′
(0) = 0, y(0) = 0, y

′
(0) = 0 in (2.6) and (2.7)

yields c0 = 0, d0 = 0, c2 = 0, d2 = 0. In consequence, the system of equations
(2.6) and (2.7) reduces to the form:

x (t) = Iβ0+I
α
1−h (t) + c1

tβ+1

Γ (β + 2)
, (2.8)

y (t) = Iq0+I
p
1−k (t) + d1

tq+1

Γ (q + 2)
. (2.9)

Making use of the conditions x(ξ) = a
∫ η
0

(η−s)ϕ−1

Γ (ϕ)
x (s) ds, y(δ) = b

∫ θ
0

(θ−s)τ−1

Γ (τ)
y (s) ds

in (2.8) and (2.9) and solving the resulting equations for c1 and d1, we find
that

c1 =
Iβ0+I

α
1−h (ξ)− a

∫ η
0

(η−s)ϕ−1

Γ (ϕ)
Iβ0+I

α
1−h (s) ds

a
∫ η
0

sβ+1

Γ (β+2)
ds− ξβ+1

Γ (β+2)

,

d1 =
Iq0+I

p
1−k (δ)− b

∫ θ
0

(θ−s)τ−1

Γ (τ)
Iq0+I

p
1−k (s) ds

b
∫ θ
0

sq+1

Γ (q+2)
ds− δq+1

Γ (q+2)

,

which, on substituting in (2.8) and (2.9), leads to the solution system (2.4)-
(2.5). The converse follows by direct computation. The proof is completed.

Lemma 2.4. (Leray-Schauder alternative) ([17]). Let F : E → E be a com-
pletely continuous operator (i.e., a map that restricted to any bounded set in
E is compact). Let

ε (F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1} .

Then either the set ε (F ) is unbounded, or F has at least one fixed point.
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3 Main results

Let us introduce the space X = {x (t) |x (t) ∈ C ([0, 1] ,R)} endowed with the
norm ‖x‖ = sup {|x (t)| , t ∈ [0, 1]} and note that (X, ‖·‖) is a Banach space.
Then the product space (X ×X, ‖(x, y)‖) is also a Banach space equipped
with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖.

In view of Lemma 2.3, we define an operator T : X ×X → X ×X by

T (x, y) (t) =

(
T1 (x, y) (t)
T2 (x, y) (t)

)
,

where

T1 (x, y) (t) =

∫ t

0

(t− s)β−1

Γ (β)

∫ 1

s

(u− s)α−1

Γ (α)
f (u, x (u) , y (u)) duds

+
(β + 2) tβ+1

A

[∫ ξ

0

(ξ − s)β−1

Γ (β)

∫ 1

s

(u− s)α−1

Γ (α)
f (u, x (u) , y (u)) duds

−a
∫ η

0

(η − s)ϕ−1

Γ (ϕ)

∫ s

0

(s− ν)
β−1

Γ (β)

∫ 1

ν

(u− ν)
α−1

Γ (α)
f (u, x (u) , y (u)) dudνds

]
,

and

T2 (x, y) (t) =

∫ t

0

(t− s)q−1

Γ (q)

∫ 1

s

(u− s)p−1

Γ (p)
g (u, x (u) , y (u)) duds

+
(q + 2) tq+1

B

[∫ δ

0

(δ − s)q−1

Γ (q)

∫ 1

s

(u− s)p−1

Γ (p)
g (u, x (u) , y (u)) duds

−b
∫ θ

0

(θ − s)τ−1

Γ (τ)

∫ s

0

(s− ν)
q−1

Γ (q)

∫ 1

ν

(u− ν)
p−1

Γ (p)
g (u, x (u) , y (u)) dudνds

]
.

In order to get the result of our result, we introduce the following hypothe-
ses.
(H1) Assume that there exist real constants ki, λi ≥ 0 (i = 1, 2) and k0 >
0, λ0 > 0 such that ∀xi ∈ R, i = 1, 2, we have

|f (t, x1, x2)| ≤ k0 + k1 |x1|+ k2 |x2| ,

|g (t, x1, x2)| ≤ λ0 + λ1 |x1|+ λ2 |x2| .

(H2) Assume that f, g : [0, 1]×R×R→ R are continuous functions and there
exist constants mi, ni, i = 1, 2 such that for all t ∈ [0, 1] and xi, yi ∈ R, i = 1, 2,

|f (t, x1, y1)− f (t, x2, y2)| ≤ m1 |x1 − x2|+m2 |y1 − y2| ,

and
|g (t, x1, y1)− g (t, x2, y2)| ≤ n1 |x1 − x2|+ n2 |y1 − y2| .
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For computational convenience, we set

q0 = sup
t∈[0,1]

∣∣∣∣(β + 2) tβ+1

A

∣∣∣∣ , (3.1)

p0 = sup
t∈[0,1]

∣∣∣∣(q + 2) tq+1

B

∣∣∣∣ , (3.2)

M1 =
1

Γ (α+ 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α+ 1)Γ (β + 1)
+ |a| (1− η)

α
ηβ+ϕ

Γ (α+ 1)Γ (β + 1)Γ (ϕ+ 1)

]
,

(3.3)

M2 =
1

Γ (p+ 1)Γ (q + 1)
+ p0

[
(1− δ)p δq

Γ (p+ 1)Γ (q + 1)
+ |b| (1− θ)p θq+τ

Γ (p+ 1)Γ (q + 1)Γ (τ + 1)

]
.

(3.4)

The first result is based on Leray-Schauder alternative.

Theorem 3.1. Assume that (H1) holds. In addition it is assumed that

M1k1 +M2λ1 < 1 and M1k2 +M2λ2 < 1,

where M1 and M2 are given by (3.3) and (3.4) respectively. Then the boundary
value problem (1.1) has at least one solution.

Proof. First we show that the operator T : X × X → X × X is completely
continuous. By continuity of functions f and g, the operator T is continuous.
Let Ω ⊂ X × X be bounded. Then there exist positive constants L1 and L2

such that

|f (t, x (t) , y (t))| ≤ L1, |g (t, x (t) , y (t))| ≤ L2, ∀ (x, y) ∈ Ω.

Then for any (x, y) ∈ Ω, we have

|T1 (x, y) (t)| ≤

∣∣∣∣∣
∫ t

0

(t− s)β−1

Γ (β)

∫ 1

s

(u− s)α−1

Γ (α)
f (u, x (u) , y (u)) duds

+
(β + 2) tβ+1

A

[∫ ξ

0

(ξ − s)β−1

Γ (β)

∫ 1

s

(u− s)α−1

Γ (α)
f (u, x (u) , y (u)) duds

−a
∫ η

0

(η − s)ϕ−1

Γ (ϕ)

∫ s

0

(s− ν)
β−1

Γ (β)

∫ 1

ν

(u− ν)
α−1

Γ (α)
f (u, x (u) , y (u)) dudνds

]∣∣∣∣∣
≤ L1

∫ t

0

(t− s)β−1

Γ (β)
(

∫ 1

s

(u− s)α−1

Γ (α)
du)ds+ q0L1

[∫ ξ

0

(ξ − s)β−1

Γ (β)
(

∫ 1

s

(u− s)α−1

Γ (α)
du)ds
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+ |a|
∫ η

0

(η − s)ϕ−1

Γ (ϕ)
(

∫ s

0

(s− ν)
β−1

Γ (β)
(

∫ 1

ν

(u− ν)
α−1

Γ (α)
du)dν)ds

]

≤ L1

{
1

Γ (α+ 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α+ 1)Γ (β + 1)

+ |a| (1− η)
α
ηβ+ϕ

Γ (α+ 1)Γ (β + 1)Γ (ϕ+ 1)

]}
,

which implies that

‖T1 (x, y) (t)‖ ≤ L1

{
1

Γ (α + 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α + 1)Γ (β + 1)

+ |a| (1− η)α ηβ+ϕ

Γ (α + 1)Γ (β + 1)Γ (ϕ+ 1)

]}
= L1M1.

Similarly, we get

‖T2 (x, y) (t)‖ ≤ L2

{
1

Γ (p+ 1)Γ (q + 1)
+ p0

[
(1− δ)p ξq

Γ (p+ 1)Γ (q + 1)

+ |b| (1− θ)p θq+τ

Γ (p+ 1)Γ (q + 1)Γ (τ + 1)

]}
= L2M2.

Thus, it follows from the above inequalities that the operator T is uniformly
bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2.
Then we have

|T1 (x (t2) , y (t2))− T1 (x (t1) , y (t1))|

≤ L1

∣∣∣∣∣
∫ t1

0

(t2 − s)β−1 − (t1 − s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
du

)
ds

+

∫ t2

t1

(t2 − s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
du

)
ds

∣∣∣∣∣
+ L1

∣∣∣∣∣∣
(β + 2)

(
tβ+1
2 − tβ+1

1

)
A

×

[∫ ξ

0

(ξ − s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
du

)
ds

−a
∫ η

0

(η − s)ϕ−1

Γ (ϕ)

(∫ s

0

(s− ν)β−1

Γ (β)

(∫ 1

ν

(u− ν)α−1

Γ (α)
du

)
dν

)
ds

]∣∣∣∣∣ .
Analogously, we can obtain

|T2 (x (t2) , y (t2))− T2 (x (t1) , y (t1))|
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≤ L2

∣∣∣∣∣
∫ t1

0

(t2 − s)q−1 − (t1 − s)q−1

Γ (q)

(∫ 1

s

(u− s)p−1

Γ (p)
du

)
ds

+

∫ t2

t1

(t2 − s)q−1

Γ (q)

(∫ 1

s

(u− s)p−1

Γ (p)
du

)
ds

∣∣∣∣∣
+ L2

∣∣∣∣∣(q + 2)
(
tq+1
2 − tq+1

1

)
B

×

[∫ δ

0

(δ − s)q−1

Γ (q)

(∫ 1

s

(u− s)p−1

Γ (p)
du

)
ds

−b
∫ θ

0

(θ − s)τ−1

Γ (τ)

(∫ s

0

(s− ν)q−1

Γ (q)

(∫ 1

ν

(u− ν)p−1

Γ (p)
du

)
dν

)
ds

]∣∣∣∣∣ .
Therefore, the operator T (x, y) is equicontinuous, and thus the operator
T (x, y) is completely continuous.

Finally, it will be verified that the set
ε = {(x, y) ∈ X ×X |(x, y) = λT (x, y) , 0 ≤ λ ≤ 1}
is bounded. Let (x, y) ∈ ε, then (x, y) = λT (x, y) . For any t ∈ [0, 1], we have

x (t) = λT1 (x, y) (t) , y (t) = λT2 (x, y) (t) .

Then

|x (t)| ≤ L1

{
1

Γ (α+ 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α+ 1)Γ (β + 1)
+ |a| (1− η)

α
ηβ+ϕ

Γ (α+ 1)Γ (β + 1)Γ (ϕ+ 1)

]}

× (k0 + k1‖x‖+ k2‖y‖) ,
and

|y (t)| ≤ L2

{
1

Γ (p+ 1)Γ (q + 1)
+ p0

[
(1− δ)p ξq

Γ (p+ 1)Γ (q + 1)
+ |b| (1− θ)p ηq+τ

Γ (p+ 1)Γ (q + 1)Γ (τ + 1)

]}

× (λ0 + λ1‖x‖+ λ2‖y‖).
Hence we have

‖x‖ ≤M1 (k0 + k1‖x‖+ k2‖y‖) ,

and
‖y‖ ≤M2 (λ0 + λ1‖x‖+ λ2‖y‖) .

Which imply that

‖x‖+ ‖y‖ = (M1k0 +M2λ0) + (M1k1 +M2λ1) ‖x‖+ (M1k2 +M2λ2) ‖y‖.

Consequently,

‖(x, y)‖ ≤ M1k0 +M2λ0
M0

,
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for any t ∈ [0, 1], where M0 = min {1− (M1k1 +M2λ1) , 1− (M1k2 +M2λ2)} ,
which proves that ε(T ) is bounded. Thus, by Lemma 2.4, the operator T has
at least one fixed point. Hence the boundary value problem (1.1) has at least
one solution. The proof is complete.

In the second result, we prove existence and uniqueness of solutions of the
boundary value problem (1.1) via Banach’s contraction principle.

Theorem 3.2. Assume that (H2) holds. In addition, assume that

M1(m1 +m2) +M2(n1 + n2) < 1,

where M1 and M2 are given by (3.3) and (3.4) respectively. Then the boundary
value problem (1.1) has a unique solution.

Proof. Define supt∈[0,1] f(t, 0, 0) = N1 < ∞ and supt∈[0,1] g(t, 0, 0) = N2 < ∞
such that

r ≥ N1M1 +N2M2

1−M1 (m1 +m2)−M2 (n1 + n2)
.

We show that TBr ⊂ Br, where Br = {(x, y) ∈ X ×X : ‖(x, y)‖ ≤ r} .
For (x, y) ∈ Br, we have

|T1 (x, y) (t)|

≤ max
t∈[0,1]

∣∣∣∣∣
∫ t

0

(t− s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
|f (u, x (u) , y (u))− f (s, 0, 0)|+ |f (s, 0, 0)| du

)
ds

+
(β + 2) tβ+1

A

[∫ ξ

0

(ξ − s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
|f (u, x (u) , y (u))− f (s, 0, 0)|+ |f (s, 0, 0)| du

)
ds

− a
∫ η

0

(η − s)ϕ−1

Γ (ϕ)

(∫ s

0

(s− ν)β−1

Γ (β)

(∫ 1

ν

(u− ν)α−1

Γ (α)
|f (u, x (u) , y (u))− f (s, 0, 0)|

+ |f (s, 0, 0)| du
)
dν

)
ds

]∣∣∣∣∣
≤
{

1

Γ (α+ 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α+ 1)Γ (β + 1)
+ |a|

(1− η)α ηβ+ϕ

Γ (α+ 1)Γ (β + 1)Γ (ϕ+ 1)

]}
× (m1‖x‖+m2‖y‖+N1)

≤M1 [(m1 +m2) r +N1] .

Hence

‖T1 (x, y)‖ ≤M1 [(m1 +m2) r +N1] .

In the same way, we can obtain that

‖T2 (x, y)‖ ≤M2 [(n1 + n2) r +N2] .
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Consequently, ‖T (x, y)‖ ≤ r. Now for (x2, y2), (x1, y1) ∈ X × X, and for any
t ∈ [0, 1], we get

|T1 (x2, y2) (t)− T1 (x1, y1) (t)|

≤

∣∣∣∣∣
∫ t

0

(t− s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
|f (u, x2 (u) , y2 (u))− f (u, x1(u), y1(u))| du

)
ds

+
(β + 2) tβ+1

A

[∫ ξ

0

(ξ − s)β−1

Γ (β)

(∫ 1

s

(u− s)α−1

Γ (α)
|f (u, x2 (u) , y2 (u))− f (u, x1(u), y1(u))| du

)
ds

− a
∫ η

0

(η − s)ϕ−1

Γ (ϕ)

(∫ s

0

(s− ν)β−1

Γ (β)

(∫ 1

ν

(u− ν)α−1

Γ (α)
|f (u, x (u) , y (u))

− f (u, x (u) , y (u))| du
)
dν

)
ds

]∣∣∣∣∣
≤M1 (m1‖x2 − x1‖+m2‖y2 − y1‖)
≤M1 (m1 +m2) (‖x2 − x1‖+ ‖y2 − y1‖) ,

and consequently we obtain

‖T1 (x2, y2) (t)− T1 (x1, y1) (t)‖ ≤M1 (m1 +m2) (‖x2 − x1‖+ ‖y2 − y1‖) .

Similarly,

‖T2 (x2, y2) (t)− T2 (x1, y1) (t)‖ ≤M2 (n1 + n2) (‖x2 − x1‖+ ‖y2 − y1‖) .

It follows from (3.6) and (3.7) that

‖T (x2, y2)−T (x1, y1)‖ ≤ [M1 (m1 +m2) +M2 (n1 + n2)] (‖x2 − x1‖+ ‖y2 − y1‖) .

Since M1(m1 +m2) +M2(n1 + n2) < 1, therefore, T is a contraction operator.
So, by Banach’s fixed point theorem, the operator T has a unique fixed point,
which is the unique solution of problem (1.1) . This completes the proof.

4 Applications

In this section, we will give an example to illustrate our main results.
Example 4.1 Consider the following equation

cD
3
2
1−D

1
2
0+x (t) = 1

8(t+2)2
|x|

1+|x| + 1 + 1
36

sin2 y, t ∈ [0, 1] ,

cD
3
2
1−D

1
2
0+y (t) = 1

32π
sin (2πx) + |y|

16(1+|y|) + 1
2
, t ∈ [0, 1] ,

x (0) = 0, x′ (0) = 0, x
(
1
3

)
=
∫ 1

4

0
x (s) ds,

y (0) = 0, y′ (0) = 0, y
(
1
4

)
=
∫ 1

5

0
y (s) ds.

(4.1)

Here α = 3
2
, β = 1

2
, p = 3

2
, q = 1

2
, ξ = 1

3
, a = 1, η = 1

4
, ϕ = 1, δ = 1

4
, b =

1, θ = 1
5
, τ = 1,

and

q0 = sup
t∈[0,1]

∣∣∣∣(β + 2) tβ+1

A

∣∣∣∣ ≈ 5.557099,
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p0 = sup
t∈[0,1]

∣∣∣∣(q + 2) tq+1

B

∣∣∣∣ ≈ 8.485766,

M1 =
1

Γ (α+ 1)Γ (β + 1)
+ q0

[
(1− ξ)α ξβ

Γ (α+ 1)Γ (β + 1)
+ |a|

(1− η)α ηβ+ϕ

Γ (α+ 1)Γ (β + 1)Γ (ϕ+ 1)

]
≈ 2.714217,

M2 =
1

Γ (p+ 1)Γ (q + 1)
+ p0

[
(1− δ)p δq

Γ (p+ 1)Γ (q + 1)
+ |b|

(1− θ)p θq+τ

Γ (p+ 1)Γ (q + 1)Γ (τ + 1)

]
≈ 3.649045.

Also, f(t, x(t), y(t)) = 1
8(t+2)2

|x|
1+|x|+1+ 1

36
sin2 y, g(t, x(t), y(t)) = 1

32π
sin (2πx)+

|y|
16(1+|y|) + 1

2
.

Note that

|f (t, x1, y1)− f (t, x2, y2)| ≤
1

32
|x1 − x2|+

1

32
|y1 − y2| ,

|g (t, x1, y1)− g (t, x2, y2)| ≤
1

16
|x1 − x2|+

1

16
|y1 − y2| ,

and

M1 (m1 +m2) +M2 (n1 + n2) ≈ 0.625769 < 1.

Thus all the conditions of Theorem 3.3 are satisfied and consequently, its
conclusion applies to the problem (4.1).
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