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Abstract

In this paper, we study a class of p-Laplacian type fractional impulsive
differential equation with boundary value problem. The existence of solutions
is obtained by using the fixed point theorem. Finally, we present two examples
to illustrate our main result.
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1 Introduction

In this paper, we consider the p-Laplacian fractional differential equation with bound-
ary value problem

CD€+¢P (CDngu(t)) = f(t7 u(t))a teJ = J//\ (tlv lo, -, tm)a J = [07 1]7
Alu(ty)) = Iru(te), A(u'(tk)) = Jpu(te), A (u(te)) = Qrulte), (1.1)
au(0) + bu(l) =0, au'(0) + bu/(1) =0, '
au’ (0) +bu” (1) = 0, °Dgu(0) +° DS u(l) = 0,
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where Dy, , CD'B ot are Caputo fractional derivative. ¢,(s) = |s|P~2s is p-Laplacian operator
and satisfies 1 —|— c=1p>1 ¢,(s) = ¢4(s). a, b aretwo real constants with a > b >
0. 0<B§1 2<a§3 k=12, ---,m, O0=to<t1 < - <ty <tmy1 =1 f€
C(J xR, R), It(-), Jk(-), Qx() € C(R, R). Ip(u(ty)) = u(ty) —ulty), Ji(u(ty)) =
u(65) — ' (ty), Qulu(ty)) = u” (tF) —u"(t;), where u(t]) and w(t; ) represent the right
and left limits of u(¢) at the impulsive point t = t(k = 1,2,3,--- ,p), respectively, u/(tz),
u (ty ), u' (t)) , and u' (t, ) have a similar meaning at ¢ =t,(k =1,2,3,--- ,p).

Compared with integer order differential equations, fractional order differential equa-
tions can better describe some natural physical phenomena, such as viscoelasticity [1], fluid-
dynamic traffic model [2], economics [3], etc. In the past decades, there has been a signif-
icant theoretical development and application in fractional differential equations. In this
paper, we discuss the existence of solutions of fractional impulsive differential equation
with p-Laplacian operator. The p-Laplacian operator is the non-standard growth opera-
tor which arises from nonlinear electrorheological fluids [4], image restoration [5], elasticity
theory [6], etc. Up to now, there are many papers studied the existence of solutions of
fractional differential equation with the p-Laplacian operator [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18]. There are some methods are used usually to study the existence of the
solution for this equations, such as upper and lower solutions method [19], fixed point
theory [20], coincidence degree theory [21], critical point theory [22], etc.

In [23], the author studied the fractional impulsive differential equations with boundary
value conditions:

CD0+’LL() flt, ut), 2<a<3,teJ =J\(t1, ta, -+, ,
Alu(ty)) = In(u(te)), A(u'(t)) = Ir(u(ty)), //A”(U(tk)) = Qr(u(ty)), k=1,2, -+, m,
u(0) +u(1) =0, v (0)+2 (1) =0, v (0)+u (1) =0,

where “Df, CD€+ are caputo fractional derivative, f € C(J xR, R), It(-), Ji(-), Qx(:) €
C(R, R).

In [24], the author studied the following p-Laplacian differential equations with im-
pulsive effects:

D ¢y (Dgu(t)) = f(t, u(t)), teJ =JT\(t, ta, -, tm), J=[0, 1],
Au(ty)) = Ip(ultr)), A/ (tr)) = Jk(ulty)), k= 1 2.0+ m,
au(0) + bu(1) = 0, au'(0) + bu/(1) = 0, “D§,u(0) + 0+u(1)

where 0 <8 <1, 1 <a<2, °Df,, CD5+ are caputo fractional derivative. ¢,(s) =
|s|P~2s is p-Laplacian operator. f € C(J x R, R), It.(-), Ju(-) € C(R, R). a, b are two real
constants with a > b > 0.

Motivated by the works mentioned above the papers, we concentrate on the solutions
for the nonlinear fractional differential equations (1.1). We obtain the existence result of
the p-Laplacian type fractional impulsive differential equation with boundary value prob-
lem by using the Schauder fixed point theorem and Leray-Schauder fixed point theorem.

The main work of this paper are organized as follows: In section 2, we give some basic
concepts of fractional differential equation. In section 3, we give the main result which
based on the fixed point theory. Two examples are given in section 4 to illustrate our
main result.



Existence of solutions of a class of p-Laplacian type fractional impulsive DE 3

2 Preliminaries

Definition 2.1. Let set J() = [0, tl], Jl = (tl, tg}, ey Jm—l = (tm—I; tm}, Jm =
(tm, 1] and the spaces:

PC(J, R)={u:J = RlueC(J), k=0,1, -+, m, and u(t]) ewist, k=1,2, ---, m.}

with the norm

[[ull = sup [u(?)]
teJ

PC*(J,R) = {uw:J— Rlue C*(J),k=0,1,2,--- ,m, and u(t,j),u,(t;),u”(t;)efnist,
k=1,2,---,m.}

with the norm

/ 1"
[ull pe2 = max([Jull, lu)ll; [lu),

obviously, PC(J, R), PC?(J, R) are Banach spaces.

Definition 2.2. A function uw € PC?(J, R) with the Caputo derivative of order o existing
on J is a solution of (1.1) if it satisfies (1.1).

Definition 2.3. (/25, 26]) The fractional integral of order a(a > 0) of function f :
[0, o) — R is given by

1

o) = /0 (t— )@ f(s)ds,

Definition 2.4. (/25, 26]) The Caputo fractional derivative of order a(a > 0) of func-
tion f :]0, c0) = R is given by

t
— [ = sas

‘Dg: f(t) = T(n—a)

where t > 0, n = [a] + 1, T'(a) is the Gamma fuction.

Definition 2.5. (/27]) Let X and Y be normed linear spaces and T be linear operator
from X to Y. If any bounded subset M of X, TM is relatively compact set in'Y , then T
1s called a completely continuous operator.

Lemma 2.6. (25, 28]) For a > 0, then

(1) Ig (°Dgyu(t)) = u(t) 4 co+ 1t + - 4 co1t™ !, ¢ €R, n=[a] + 1.
(2) °Dg, IS u(t) = u(t).

Lemma 2.7. (/29]) (Schauder fized point theorem) Let X be Banach space and D C X a
convez, closed, bounded set. If T : D — D is a continuous operator such that TD C
X, TD is relatively compact, then T has a fized point x € D.
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Lemma 2.8. (/29]) (Leray-Schauder fixed point Theorem ) Let X be a Banach space, T :
X — X is a completely continuous operator and V = {z € X|z = pTz, 0 < p < 1} a
bounded set. Then T has a least one fixed point in X.

Lemma 2.9. For a given y € C|0, 1], a function u is a solution of the following impulsive
boundary value problem

‘DJ ¢y (“Dgu(t)) =y(t), 0<B<1, 2<a<3, tet
A0 = (), A0/60) = (00

Au (tg)) = Qr(u(ty)), k=1,
au(0) + bu(1l) = 0, au/(0) + bu'(1 ,

27 7
" " ) -
au (0) +bu (1) =0, °Df u(0) +° D u(l) =0,

if and only if u satisfies the following integral equation.

( t
1@/ (t — 8)2Lo(2(s))ds + C1 + Cot + Cst2, € Joy:
0

L t —5)%Lo(2(s))ds 1 . — )2 Lo (2(s))ds
i =9 oD s+ s S [ (= o)
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where

m+1 m—1 . t;
a+b(r (@) 2[ (ti = 5)* " o(x(s))ds + ) (Ft(”(’l _tlli/i (t;i — 8)* 2 pg(2(s))ds

1 =1
m

m—1 . 2 t; B ¢
+ 3 gty  eteons + 3 i [ oGl

=1

- —t;) (Y 4 V2t
+; (]‘ If?(na)(_tﬂ;) tl)\/tll(tz - 3)0‘73(72&1(2’ s))ds —+ ; é;(atjl)Q) /tll(tz o S)a73¢q(2(5))d8

m—1 RY m
FR () + 3 b — 6D (ule) + 3 2 " Qu (1) + (1~ ) ()

+7§1<1—tm><m— DQituley) + 35 1)

b m—+1

_(a+b)2 [2; F(Ol—l)/’_i (tz _3)a—2¢q(2(s))+ ‘

i=

Gy

+Z Oz— /1 t —5)0‘ 3¢q ds—‘rZJ utz) + 4 (m—tz)Qz(u(tl))

+Z 1= tn))Qi(ults) — (a+b)(D(a —2)) Z/t 1t = 5)" g (2(s ))ds_aib;Qi(u(ti))]

b o P
a+b<(a+b a2 Z/t (t; — 5)¢ S)Qb(())d5+2(a+b)ZQi(u(ti))>,

ib(mz ﬁ | (‘ e mz = " (t 970 x5

ti m—1

(t; — ) 3¢(2(s))ds + Z Ji(u(ts)) + Y (tm — t:)Qi(u(ty))
ti—1 =1
m+1 m

+Z 1_tm Q’L U tl))) - (a+b Ol* Z/; t _S O( 3¢q( ( )) - (aib)ZQl(u(tl»’
C3 = (a+b (a2 Z/t 1 (ti — ) 3pg(2(s)) ds+ zz:
1 [t _ 1 1 _
z(t):r(ﬂ)/o (t— 5)° 1y(s)ds—m/o (1= 5)7=1y(s)ds.

proof If u satisfies equation (2.1), for ¢t € Jy, applying Ioﬁ+ to both sides of (2.1). One has

C

m+1

6p(*DEu(t)) = I, ult) — co = F(lﬂ)/o (t — 5)5Lu(s)ds — co,

then
1

1
B Dgu(0) = =0, 6, Dgeu(V) = 5 [ (1= 5" u(s)ds —

I'(s
By combing the boundary the condition “Df, u(0) +° Dfu(1) = 0, one can obtain
L
o= = —8)" " u(s)ds,
2I(8) Jo
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then

t 1
o Dguult) = g5 | 1=/ utnds = g [ (1= 9 (s

I(B) T'(28)
Let

z —L t — )8 (s s—; 1 — )8 1u(s)ds
) = 37 [ ¢ = 9" us)ds = s [ (1= utepas,

by (1) of Lemma 2.5, one has

u(t) = F(la) /Ot(t —5)* Lo, (2(s))ds — 1 — cat — c3t?, t € Jo,
then
) 1 t o
u (t) = F(a_l)/o (t — 5)* 2py(2(5))ds — co — 2c3t, t € Jo,
u(t) = F(al_2)/0 (t — 5)*3¢g(2(s))ds — 2c3, t € Jo,

where ¢1, 9, c3 € R.
If t € Ji, one has

u(t) = Tl

(1a) /t:(t—s)a1¢q(z(s))ds—d1 —dg(t—tl)_dg(t_t1)2’ te gy,

o (1) = I‘(al—l)/t (£ — )26, (2(5))ds — ds — 2ds(t — 1), t € J1,
u(t) = F(al_Q) /t (t — 5)2 3py(2(s))ds — 2d3, t € Jy,

where dy, do, d3 € R.
Thus, one has

L g
u(ty) = F(a)/o (t —s)* tu(s)ds — c1 — cot — est?,  w(t]) = —di,
A () = F(al_l) /0 "t 5) 20y (o())ds — o — 2ty (E) = —da,
d () = F(al_z) /0 "t )03, (2(5))ds — 265, u (tF) = —24s.

In view of

Au(tr) = u(t]) —u(ty) = L(u(h)), Au'(h) =u' (t) = u'(t7) = Ji(u(th)),

and

Au(ty) =" () = u' (87) = Qi (u(tr)),
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one can obtain

t
—d) = F(la) /0 (t — s)* tu(s)ds — ¢y — cot — c3t?,
1 h
—dy = (o —1) /0 (t —5)* 2py(2(5))ds — ca — 2c3ty,
1 h
-2 = 5 /O (t = )23, (2(s))ds — 205.

Consequently

u(t) = F(la) / (¢ (e + F(la) /0 (- 5)* 1 g(2(s))ds

t—t

! — 5)"2¢(2(s))ds (t—t)* " — 5)Y 3¢, (2(s))ds
+r<a_1>/0<t1 )" (x(s))d +2p(a_2)/0<t1 )* 2 (2(5))d

+ Il(u(tl)) + (t — tl)Jl(u(tl)) + %(t - tlz)Qi(u(tl)) —c1 —cot — 03t2, teJ.

Similarly, one has

T R R Y R
F(Oé) 0 - S zZ(S S 1 2k 3L, 0
L t —s)ed z(s))ds b " ,7504—1 z(s))ds
+F(a)/tk(t )7 e(=(s)d +F(0z Zz;/t L (t Pa(#(s))d
Rl (ty —ti) [ a2 . (t —ti 936 (2(s))ds
e R A d*;ma—l/tlt )" y(x(s)d
t; k— 1 _
u(t) = +Z§1 (’éa__t’“l)) /ti_l(tis) z; af’“Q t) /t l(ti—s)a_sq{)q(z(s))ds
(=)’ [ e S S
+z-212f(a—2)/t 1(zt—s) 3o (2( —l—;[zutz +;tk—t),]( u(t;))
+’“le(tk—2” +Zt—tk )+Zt—tk (b — ) Qi (u(t:))
= =1
+k (t_;'“)zQz(( ))+01+02t+03t2 teJy, k=1,2, -, m,
=1
t k t;
o (1) = r(al—n /tk(ts)a_2¢(z(s))ds+;r(a1_l) /ti_l(tis)a_2¢q(z(s))ds
k—1 4 t; k . t;
+X D [ etetenas + > S [ ot
k k—1 k
) Ti(ult) + Ytk — t)Qi(u(t) + D (t — te)Qi(u(t:) — ea — 2est,
i=1 i=1 =1

tedy,k=1,2, -+, m,
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V0= gy [ e+ ) [ =9t

+ZQ1 z _263 tEJk ]{}:17 27 cee,m.

By the condition au(0) + bu(1) = 0, one has

(a+b)er + b(ea + c3)

_L t —g)e 1 - g P — a 1
=Fa) /t,f’f 7 (a(s))ds + Z / Bul2(s))ds
k—1 e
+Zr(‘t(’;__tll))/ (t _3)0‘ ¢q Z tk;le /t 1(ti—5)a_3¢q(2(8))d8
k .
(t—ty) [" )(te — t;) "
+; M1 /ti_l(t I d”z a_kz /tl_l““” 30q(2(s))ds
- (t_tk) b ti a—3 d I kilt iV b
+22P<a—2>/m( el S+Z () + X = ) ()
k—1 (th — t:)? k k—1
+ 5 Qi(u(t)) + Y (t = tp)Ji(u(t:) + > (t — i) (te — t:)Qi(ults))
i=1 i=1 i=1
3 0 )
1=1
By the condition au' (0) 4 bu'(1) = 0, one has
(a +b)eg + 2bes
m 1 ti 02 m—1 (tk—tz) t - s
I ARCREARCCCIED Y Y R R C O,
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Combing (2.6), (2.7) and the condition au’ + bu" = 0, one has

m+1

Cl:a+b Z/tlt—sa1¢ ds+2¥a_t{;/t'lt—s)a 2q(2(5))ds

i=1

+ ; ;;m;fz / (=0 autetopdo+ 3 g [ oo en(a(ois

+ Z Lo (a — 2 . /t il (ti — S)a_3¢q( (s))ds + Z 2;‘; —)2) / (ti — 3)0473(?561(2(5))013

ti—1

m m—1

3 )+ 3 - ) + 3 2= 00 + 3000~ i)
i=1 =1 = i=1

+Zrla_— /1t—s)°‘3¢q ds+ZJ (t;) +Z (t))

#2206 ~ ey Z/tlt—sa%q(()) - > Guute)]

b il T
a+b< (a+b (a—2)) Z/t 1 $) gy (2 ())d8+2(a+b);Qi(u(ti)),
m+1 mel,
= (] ey / s + 3 1 [ o eteas
*Z 1; = / (t: = 9)" 04 dHZJ +TZ§ (tm — 1) Qi u(ts))
m—+1

+ 2 op(1 = tm)Quu(t) — 20( TS Z/tl ti — )"0y (2(5))ds

= gazxu(ti)))),

m+1

“o (a+b (a—2) Z/t (t = o) (a() +b ZQ’

Letting C1 = c¢1, Cy = ¢, C3 = c3, we obtain the u(t). Conversely, assume that wu(t) is
the form of (2.2), then by a direct computation, it satisfies the problem (2.1). The proof
is completed.
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3 Main result

Theorem 3.1. Assume that the following conditions

lim f(i;“) =0, lim I’“i“) =0, lim J’“i“) =0, lim Q’“lf“) =0, (3.1
hold, then the problem (1.1) has at least one solution.
Define an operator T : PC(J, R) — PC(J, R)
1 ! _ Ja—1 : & A a 1
T(u(t)) = T J, (t 8)* ¢(2(s))ds + 7= Z ¢q(2(s))ds
=1
k—1 )
(tk — ti) , a—2 (tk —t)? [ a-3
+3rot [ = onas . m / 9 (el
Fot—ty) [ (- ) (e — 1) s
+ 2} " /ti_l(ti _ sy > e /ti_l(tl- — 5)2 34, (=(s))ds
koo, t; k k-1
+2 Q(IE(oat—k)w /t (ti = 8)* ¢ (=(s))ds + Z )+ )tk — ti) Ji(u(ti))
=1 i—1 =1 =1
k—l(tk_ti)g . k ) k-1 )
+ Z 5 ,Ql(u(tz)) + Z(t tk + Z t tk )Qz( ( z))
=1 =1 =1
bt - t)?
+)° T Qilu(ts)) + iy + mat + mst?,
where
my1 = C1, mg = Cy, m3 = (3,
and
0= i [ (€907 oy wlods = Deutt) s [0 571G, wlss

proof Firstly, we prove that 7' : PC(J, R) — PC(J, R) is a completely continuous
operator by following three steps.

Step 1 We proof that T : PC(J, R) — PC(J, R) is continuous.In view of the
continuouity of functions f, Iy, Jx, Qk, we conclude that T': PC(J, R) — PC(J, R) is
continuous.

Step 2 We proof that T maps bounded sets into bounded sets. Indeed, let €2 be
bounded subset on PC(J, R), then there exists positive constant L; > 0(i = 1, 2, 3, 4) such
that for Vu € Q, |f(t, w)| < L1, [Ix(u)| < Lo, |Jk| < L3, |Qr| < Ly4. By simple computa-
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tions, one has

1 ' _ g)8-1 U 1 1 — )P (s, u(s)ds
o0 (3 (¢ 9 s uttar = s [0 971G, uteha])

=19 <5Lr</j> ‘fmegﬁn)
: (P(ﬁLi 1>> |

Lo\ (m+1) L b Pt D)
Imy| < (F(B"‘l)> [(a+b)F(a+1)+(a+b)F(a—1) <2p+ 2(a—|—b)+ (a+b)? )]
mLQ 2mL3 1 <

+a—|—b+ a+b +a+b

b
2 —— | L
m+a+b> 4,

L \"'( (m+1) 2m
i< () (@dmne e 2k

Ly \"" (m+1) mLy
o< (5w) Tt 0t 2y

IT(u(t))] < <F(ﬁLi 1)>q1 {p(a1+ 1 <m+ Lt TZibl) * F(la) <2m+ TZL:)

b*(m + 1) m+1>]}

2 P —
—|—m+2

+b< +2(a+b) (a+0b)?

* ("”m) ot (2m+a+b+m> L?’*(‘*m*m(Qm*m)

1 1
+ [2m+7 2m
a

Let

v () {rem (71 550) i (4 )

2(m+1) m
T(a— 1) a+b<2m+2(a+b)+b(a+—£)i Hm*;l)”

2m 1 b
Lg—i—<2m+a+b—|—m>L3+(4m+a+b<2m+a+b>
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which implies that | T(u(t))||pc < L.
Step 3 we proof that T is equicontinuous on all the subintervals. Indeed, for any t €
Jg, k=0, 1, 2, ---, m, one has

(Tu) (1)] < (Mfﬂ)f [p<1a) (1 * ib> " ml_ 1) (2m+ (&njbl))}

m
2mL 4 — | Ly.
+m3+(m+a+b> !

Let

E= () [ (o) * g (2 ) ] oo

m
4 —— | L4.
+<m+a+b> 4

Thus, for 7, o € Ji, k=0, 1, 2, ---, m, one has

T2

(Tu) (11) = (Tu) (r2)| < / (Tw) (#)]ds < L(r1 = 72),

T1

which means that T is equicontinuous on all the subintervalst € Ji, k=1, 2, ---, m. Thus
T is relativity compact. By means of the definition 2.5, we can obtain T : PC(J, R) —
PC(J, R) completely continuous.
Next, we proof that for 2 C PC a convex, closed, bounded set, one has T2 C ).
From the condition of (3.1), there exists ¢; > 0(i =1, 2, 3), r >0 ,and |u| < r such
that
[f(t, w) < erful, Hi(u)| < e2lul, [Jr(u)| < eslul, [Qr(u)] < eaful,

and
q—1
€1 1 m—+1 1 m—+1
- . 1 2
<F(6+1)> {r(a+1) <m+ +a+b)+F(a)<m+ a+b>
1 b b?(m + 1) m+1
= Pmr— (2 om+ 3.2
P(a—l)[m+a+b(m+2(a+b)+ arp? T )H (32)
et (2ma 2 ) eyt (dm —— (2m ) ).
atb)? a+b s a+tb a+tb) 2a+b)) "
<1.

Let Q = {u € PC(J, R) | ||ul]|pc < r}. Obvious, € is a convex, closed and bounded set.
When u € PC(J, R) and u € 09, one has ||u||pc = r. By (3.2), one has

<F(6+1)> (s (14 557) i (om0
a—li—b <2m+ Q(Gz- " b?fﬂ)? +2m e+ m;l> }

" Yoyt (2m+ 2" ) es ot (am+ —— (2m+ -2 )+ ).
atb)? a+tb s a+b atb)  2a+bv))

<r.

_l’_

1
+m[2m+
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Thus
£1 q-1 1 m+1 1
|Tu(t)‘§<r(6+1)> {F(a+1)< . +b>+T(a)< b>
1 b b (m+1)
e s (2 sy e )]}
m 2m 1 b
+<m—|—a+b>€2+<2m+a+b+m)53+(4m+a+b(2 b>
m
+2(a+b))84
<r

Then, ||Tul|pc < r and TQ C Q. According to Lemma 2.7 , T has at least one fixed point
in PC(J, R). Thus, the problem (1.1) has at least one solution.The proof is completed.

Theorem 3.2. Assume there exists positive constants L; > 0(i = 1, 2, 3, 4) such
that f(t, w) < Ly, Ix(t, u(t)) < Lo, Ji < L3, Qr < La, where t € Ji, u € PC(J,R), then
the problem (1.1) have at least one solution in PC(J, R).

proof As shown in Theorem 3.1, the operator T : PC(J, R) — PC(J, R) is completely
continuous operator. We proof the set V = {u € PC(J,R)|lu = pTu,0 < p < 1} is
bounded. Assume Yu € V and Vt € J, one has

[u(t)] = [pT (u(t))] y
S“(rwﬁn) {r<a1+1>< +1+m:;>+r<la> <2m+a:bl>
1b<2m+ (b LEmED o +m;1)}}

2
+F(a—1){m+a+ 2(a+0b)  (a+0b)?
m 2m
— | L 2 R L
—i—u(m—i— +b> 2+,u<m—|—a+b+,um> 3

ulams—— (om+ -2 V1™ Vg
m E— .
s a+b atb)  2a+b)) !

Thus Vt € J, one has

e <o () (s (1 20 ) + g (o 2ok

2 m m
+ F(al— 0 2+ a1+b <2m + 2(ab+ T b(c(z Jj)? +mt 2+1> J}

m 2m
— | L 2 L
+u<m+a+b> 2+u<m+a+b+um> 3

1 b m
4 — (2 L
“< m+a+b<m+a+b>+2(a+b>> b

which indicates that the set V' is bounded.
According to Lemma 2.8, T" has a fixed point u € PC(J, R). Then the problem (1.1) have
at least one solution. The proof is completed.
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4 Example

In this section, we give two simple examples to proof our main results.
Example 4.1 Consider the following equation:

CD('(;qlﬁp(CDmu()):tu()%—t{i sinu, p> 1, 0<5<11 QT gf,
Au(3) = w’ln(1+ ), A (5)) = V1+u2 =1, A"(5) = — = —,
2 9 2 2 U osinu (4.1)
3u(0) — §U(1) =0, 3u'(0) — §u’(O) =0, '
1" 2 "
3u (0) — U (1) =0, °D§u(0) +° Dgyu(l) =0,
1
where f(t,u(t)) = tud(t)+tu? sinu, I (u(t)) = v?in(14+u?), Jy = V1 +u2-1, Q1 = ,
 sinw
one has . ) ) )
i 1
lim tu®(t) + tu sinu ’ i & In(1+ u®) _o,
u—0 u u—0 U
1 1
/ 7 _ - — =
lim1+7U1:07 lim ¥*—Smu _ .
u—0 u u—0 u

So, all the conditions of theorem 3.1 are satisfied. Then, the problem 4.1 has at least one
solution.
Example 4.2 Consider the following equation:

( t
CD5+¢p( 0+u(t)):marctanu, p>10<p8<1, 2<a<3,
Aw)) =1+ 3cou, AW (3)) = 4u? + & Au' ()=
4 1_ ’ 14 N u?’ 47 4 4u2’ (4.2)
2u(0) — iu(l) =0, 2u'(0) — 51/(0) =0,
1" 1 "
20" (0) - 5u"(1) = 0, “Dgu(0) +° Dfu(1) = 0,

where f(t,u(t)) = # arctanu, I1(u(t)) = 1+ 3cos?u, Jy(u(t)) = 4u® + —, Q1(u(t)) =

u2

44 u?
easily verified. Thus the problem 4.2 has at least one solution.

Selection Li = g, Lo = L3 =4, Ly =1, then the conditions of theorem 3.2 are
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