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Abstract

Bitcoin is a digital currency created in January 2009 following the
housing market crash that promises lower transaction fees than tradi-
tional online payment mechanisms. Though each bitcoin transaction
is recorded in a public log, the names of buyers and sellers are never
revealed. While that keeps bitcoin users’ transactions private, it also
lets them buy or sell anything without easily tracing it back to them.
Bitcoin is based on cryptographic evidence, which therefore does not
suffer from the weakness present in a model based on trust in guarantee
authorities. The use of cryptography is of crucial importance in the
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Bitcoin system. In addition to maintaining data secrecy, in the case
of Bitcoin, cryptography is used to make it impossible for anyone to
spend money from another user’s wallet. In our paper, we develop the
idea that it is possible to reverse the cryptography process based on
hash functions (one-way) through Machine Translation with neural net-
works. Assuming this hypothesis is true and considering some quantistic
algorithms to decrypt certain types of hash functions, we will highlight
their effects on the Bitcoin system.

Mathematics Subject Classification: 62M45, 91G60, 97R40

Keywords: Neural Networks, Hash function, Bitcoin, Quantum comput-
ing

1 Introduction

Cryptography represents a branch of mathematics that finds application in
many sectors and, in a particular way, to the financial intermediation sector
that was never considered until a few years ago. This field of mathematics uses
techniques to protect information security (see Menezes et al. [22]) and, in par-
ticular, privacy, data integrity, authentication, and non-repudiation. The three
main types of algorithms used for cryptography are represented by Secret Key
Cryptography (SKC), Public Key Cryptography (PKC), and Hash Functions,
as shown by Kessler [18]. The first algorithm is based on symmetric encryp-
tion, the second one on asymmetric encryption a finally, the last one uses the
irreversibly encrypt information. Hash functions are in the spotlight, especially
when used for creating digital signatures. This type of function associates a
fixed-length digest h(m) to a string of any length m, and it verifies three fun-
damental properties for each hash function: preimage resistance, according
to which it is computationally impossible to find a preimage; 2nd-preimage
resistance and collision resistance, according to which it is computationally
impossible to find two distinct inputs that produce the same digest, as it is
witnessed by Vaudenay [39].
This paper aims to show how a hash function can be attacked using neural
networks across a particular version of a dictionary attack. In this sense, the
hash functions are not to be considered from a mathematical point of view,
but the generated output is to be understood as a particular language that,
through Machine Translation, can obtain a translation in the reverse direction.
A mechanism of this type aims to be a “translator”, e.g., SHA256 to English,
as is the case for natural language.
The paper structure is the following: in section 2 there are references to the
previous main works; in Section 3 we analyze the Neural Machine Translation
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(NMT), attention patterns, and the use of transformers; in Section 4 the NMT
is applied to a dataset consisting of the hashes of a series of words. Section
5 analyzes how hash encryption is used in the Bitcoin system, what it would
entail reversing the encryption process, and some of the main hypotheses of ap-
plying quantum computing to decrypt the output of a particular cryptographic
function based on elliptic curves. Finally, in section 6, some conclusions are
drawn.

2 Related Work

Some classic examples of hash functions are MD5 and SHA256. The former
stands for “Message-Digest ”and it was invented by Rivest [27] which hashes
bitstrings onto 128 bits and MerkleDamgȧrd construction to 128 compression
functions [23]. This algorithm consists of five phases and 64 operations, as
shown by Rachmawati et al. [26], which generate an output unique from other
digests. The latter, i.e., SHA256, stands for “Secure Hash Algorithm”, and it
represents one of the five variants belonging to the SHA family. These hash
functions were born in 1993 by the U.S. Department of Commerce and National
Institute of Standards and Technology [35] based on the MD5 hash. The first
version of the SHA, often identified as SHA-0, exploits the Merkle-Damgȧrd
paradigm to 160 compression function and hash onto 160 bits. Also, its com-
pression functions are built upon the Davies-Meyer construction (one-way).
The subsequent version always proposed by U.S. Department of Commerce and
National Institute of Standards and Technology [36], i.e., SHA-1, still produces
a 160-bit digest in output, but, unlike the previous version, it uses a rotation of
bits in the preparation of the message (ROTate Left, ROTL). Newer versions
[37], i.e., SHA-2, produce a digest whose size is represented in the nomencla-
ture: SHA224, SHA256, SHA384, and SHA512. One of the most popular is
SHA256, particularly in digital signature and Bitcoin cryptography. For this
purpose, Rachmawati et al. [26] shows the sequence of steps to generate the
output of a SHA256. The integrity of these hash functions derives from their
ability to be computationally secure to resist attacks of various kinds. The first
type of attack used to demonstrate the resistance of the hash function consists
in attacking the bitsize [22] which checks if, give two inputs xi and xj, the
hash function produces two equal strings in output, creating collisions. These
collisions occur since these functions are used to encrypt strings of any length
producing an output of constant size, requiring 2n/2 operations, where n is the
n-bit hash function. For instance, the MD5 would take 264 operations (com-
plexity) in order to search for collisions exploiting the birthday paradox, as it
can be seen by Flajolet et al. [17]. This paradox, developed by von Mises, high-
lights how the probability of finding in a group two people who have a birthday
on the same day approaches one with 50 elements. However, as demonstrated
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by Dobbertin [13], it is possible to find collisions after 226 computations for
MD4 and MD5. So we can state that they are weak hash functions. Similarly,
SHA-0 and SHA-1 hash families are vulnerable to collisions. In particular
SHA-0 is attackable with complexity 261 through a perturbation vector which
indicates where local collisions are initiated, as shown by Chabaud and Joux
[8]. Moreover, as analyzed by Stéphane and Peyrin [31], a boomerang attack,
i.e., a generalization of collision search speed-up techniques, it is required an
average time of one hour to find a collision with complexity 233.6. On the other
hand, about SHA-1, a collision was found across a cloud server system with a
complexity equal to 265.1 (see Stevens et al. [32]). Finally, no collisions have
yet been found for the SHA-2 family. The second type of attack is represented
by brute force, as analyzed by Vaudenay [39]. The brute force attack can be
applied to any encryption algorithm and is based on exhaustive research, in
which all possible keys are tried until the correct one is found; however, this
type of attack is computationally impossible as it has in the worst case a com-
plexity equal to 2n. A version of brute force attack is the dictionary attack,
in which a dictionary is a collection of precomputed words to make the key
search quicker. The probability of success in this type of attack is represented
by M/N , where M is the number of words in the dictionary and N is the
number of possible keys. Finally, the third type of attack is represented by
the so-called meet-in-the-middle (MITM), as proposed by Merkle and Hellman
[24]. This type consists of breaking up the possible key spaces in two blocks
to have N = N ′ × N ′′, where N ′ and N ′′ are the numbers of possible keys in
each of the newly created blocks. An exhaustive search in these blocks would
involve a complexity of 22n, and on average, the search has a complexity of
n2n/2. A new approach to augment cryptographic processes is chaos-based
cryptography. For example, Alqarni et al. [1] proposes a technique utilizing
the chaotic maps with adaptive symmetry to create chaos-based encryption
schemes; or Chenaghlu et al. [9] that develops a new chaotic system to design
a secure hash function; or again Ünal Cavusoǧlu et al. [34] that develop a
chaos-based Random Number Generator (RNG) used as the basis for a new
type of RSA encryption (Chaotic RSA - CRSA).

3 Neural Machine Translation

Machine Translation (MT) represents a branch of Natural Language Process-
ing (NLP) that studies the translation from one natural language to another.
Statistical models (SMT) have been the most used for a long time. Their
goal was to search, among all the sentences e of the target language, the one
with the highest probability e

′
= argmaxep(e|f), where f is a sentence of the

source language [42]. However, SMT was highly complex and required partic-
ular artifacts to capture certain language phenomena. However, with the help
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of neural networks as components of an SMT model, it was possible to have
several improvements. For instance, a feedforward neural model to create new
translation architectures created by Bengio et al. [5], or consider instead of sin-
gle words for the target language sets of these by Zamora-Martinez et al. [41],
or use neural networks for translation modeling [11], or aggregate relations in
sentences [28]. Neural machine translation (NMT), on the other hand, uses
neural networks to transform the input sentence into the output one through
different architectures (see Bahdanau et al. [3], Stahlberg [30]). The critical
feature of NMT is to generate n-gram autonomously, i.e. subsequences of a
sentence obtained by considering the words that make up the sentence in the
n-dimensional window (as explained by Manning and Schütze [21]), obtaining
better results than previous versions, as shown by Baltescu et al. [4]. The most
used architecture in NMT, before the advent of transformers, is represented
by an Encoder-Decoder network known as Sequence-to-Sequence (Seq-2-Seq)
developed by Sutskever et al. [33], used for the first time in the translation
from English to French. This architecture consists of two Recurrent Neural
Networks (RNN) which perform the functions of Encoder and Decoder, re-
spectively: the first acquires the sentences as input and encodes them into
a fixed-size context vector, while the second uses the context vector to gen-
erate the output. Generally, Encoders and Decoders use LSTM (Long-Short
Term Memory) cells; in particular, in the Encoder, the input is reproduced
inversely so that the last word read by a cell corresponds to the first word of
the connected cell constituting the context vector while, in the Decoder, from
the context vector the information is passed through the different layers of the
network one after the other. An estimator to predict the accuracy of the words
produced is the one introduced by Luong et al. [19] through a feature selection
strategy.

3.1 Attention

A problem highlighted by Cho et al. [10] is that these RNNs, due to fixed-
length encoding, cannot understand complex syntactic structures in the case
of translation of long sentences. A solution, proposed by Bahdanau et al. [3],
is the introduction of the concept of attention that allows to obtain a context
vector based on the hidden states in such a way as to have no longer a single
vector c(x), but a series of vectors ci(x) at each time interval i:

ci(x) =
N∑
j=1

αi,jhj, (1)

where αi,j represents the amount of attention corresponding to the output hj.
In Bahdanau et al. [3], the attention score αi,j is determined as:

αi,j = Softmax(v> tanh(W1hi +W2sj)), (2)
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where v,W1,W2 are parameters and hi, sj are the hidden states.
A second kind of attention is that introduced by Luong et al. [20], often referred
to as dot-product attention, in which the attention score is calculated as:

αi,j = Softmax(h>i Wsj). (3)

The fundamental difference between these two types of attention is that the
dot-product attention is much faster and more space-efficient.
Another type of attention, which has now become fundamental, is that intro-
duced by Vaswani et al. [38], also named multi-head attention. This model
consists of a sequence of attention transformer blocks, each of which is made
up of two sublayers, i.e., multi-head attention and feedforward network so that
the output of the multi-head attention is the concatenation of the outputs of
each attention head (see Stahlberg [30]). Using the notation introduced by
Vaswani et al. [38], it results:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (4)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ), WO is a weight matrix, and

Q,K, V are sets of queries, keys, and values respectively packed into matrices.
This kind of attention has led to the birth of a completely attention-based
architecture called transformers, where the dependencies between inputs and
outputs avoid the use of feedforward networks.

4 Attention on SHA256

Our paper aims to consider the output of hash functions as strings belonging
to a specific language. From a certain point of view, it is possible to consider
the characters of these strings as characters of a natural language based on
a Latin or ideogrammatic alphabet. In particular, if we consider an alphabet
based on ideograms such as Chinese or Japanese, each corresponds to a series
of notions, just as a series of ideograms joined together could correspond to
a notion that is still different from the personal meaning. Let us consider
the hash function SHA256, which is very widespread in the Blockchain and
the Bitcoin system applications. An output of this hash is a string consisting
of 64 characters, corresponding to a 256-bit digest, belonging to an alphabet
Γ = {A, ..., Z, a, ...z, 0, ...9}. The idea that we want to graft is how a specific
natural language string can find a corresponding “translation” in an n-gram
of characters of the hash output. We know that this type of hash allows us
to encode strings of any size in the output of 64 characters but, assuming the
previous hypothesis as true, we could then set ourselves the goal of determining
which n-gram best allows us to get a reverse translation from SHA256 to a
natural language. From now we will only consider English. To highlight this
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core idea, we will use a Seq-2-Seq neural network with Tensorflow framework1,
that uses the attention equations of Bahdanau et al. [3] and whose code was
implemented through Google Colab. The dataset used in this case is based
on the English-Italian dictionary2 implemented with a list of movie titles to
which several changes have been made. Firstly, since the dataset contained a
series of sentences with the corresponding translation into Italian, these have
been eliminated, leaving only the English sentences. Secondly, we created a
script (Python) that associates the corresponding SHA256 hash to each of
the remaining sentences, respecting the number of words that made up the
sentence. The key feature is that the dataset thus created contains sentences
of different sizes, from a single word up to concatenations of more than 20 of
these. In this dataset, cleaned of special characters, an association was created
between each word constituting a sentence and an ID. Also, in Seq-2-Seq,
which uses GRU (Gated Recurrent Unit) cells, training was limited to 70,000
sentences to speed up the process. The output of this model is represented by
the translation of a sentence and a heat map that highlights how the attention
mechanism has assigned the weights to the different inputs. Since the goal is
to determine which n-gram is best for improving attention in translation from
SHA256, several datasets were created based on the one described above, where
the hash was “split”to highlight the resulting attention and, consequently, Seq-
2-Seq has been trained several times with different results.
The hash was split into 4 substrings of 16 characters each in the first case.
In several cases, the translation was completely successful while, in others, it
was partial. In Figure 1, the heat maps of some sentences are represented.
In particular, Figure 1(a) corresponds to a correct translation. In contrast, in
Figure 1(b), the translation is incomplete as the original sentence was “keep
your hands off me”, and the resulting translation is “keep your hands off”.
Obviously, in this and the following cases, the assignment of the weights in the
attention process highlighted in the heat maps is not completely precise. The
words used to test the network are the same as those present in the dataset.
However, using other sentences never seen, in some cases, Seq-2-Seq could
return translations of only one portion of the sentence, which indicates how
the network can learn. In the second case, the hash was split into 8 substrings
of 8 characters each, whose heat maps are represented in Figure 2. In this case,
Figure 2(a) highlights a correct translation of the hash while, in Figure 2(b),
the translation is completely wrong since the original sentence was “blog vhs”.
The network translated into “turbo mary”, words still present in the dataset.
However, the fundamental problem here is the distribution of attention, as
evidenced in the heat maps. In the third case, the hash was split into 16
substrings of 4 characters each, whose heat maps are represented in Figure 3.

1https://www.tensorflow.org/tutorials/text/nmt_with_attention
2http://www.manythings.org/anki/
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(a) Corresponding to “hi how are
you”

(b) Corresponding to “keep your
hands off me”

Figure 1: SHA256 hash split into 4 substrings

(a) Corresponding to “home alone blades
of”

(b) Corresponding to “blog vhs”

Figure 2: SHA256 hash split into 8 substrings

As in the previous case, Figure 3(a) relates to a successful translation while
3(b) is wrong as the original sentence was “headhunter”, and the translation
was “tom is his hair is his”. However, splitting the hash into 16 substrings
does not seem convincing since the attention is almost entirely derived only
from the first 3, as evidenced by the heat maps.
In the latter case, the hash was split into 32 substrings of 2 characters each,
whose heat maps are represented in Figure 4. In this case, the translation in
both cases turns out to be wrong. In particular, the Figure 4(a) refers to the
sentence “eat it”, and produced as a translation ”tom is a good father“, while,
Figure 4(b), refers to “eat up”and produced as a translation “tom is getting
angrier”. Furthermore, this type of split does not produce good results in terms
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(a) Corresponding to “they went surfing”

(b) Corresponding to “headhunter”

Figure 3: SHA256 hash split into 16 substrings

(a) Corresponding to “eat it”

(b) Corresponding to “eat up”

Figure 4: SHA256 hash split into 32 substrings

of attention since, according to the heat maps, only the first 7 substrings, on
average, are responsible for the translation. A particular situation occurred in
this hypothesis: the Seq-2-Seq, while continuing to have the wrong translation,
managed to translate hashes that were not present in the dataset, returning
a combination of words not yet present in the training dataset that order.
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Figure 5(a), whose hash to translate corresponds to the sentence “walle the”

(a) Corresponding to ”walle the“

(b) Corresponding to ”the final fantasy xv“

Figure 5: Particular translation not present in the training set

gets as a translation “the final fantasy xv.” The hash corresponding to this last
sentence (not present in the dataset with the word “the”) obtains the single
word as translation “the”. Unfortunately, the network translations are not
always accurate, deriving from a training set consisting of only 150,000 lines.
Hence, exponentially increasing the dataset size could improve the translations
performed, while testing new types of hash splits would improve attention.

5 Application to Bitcoin

Bitcoin is a cryptocurrency created by Nakamoto [25] that uses the digital sig-
nature mechanism for the transfer of money from one subject to another and
uses the Blockchain as a register in which to record all transactions. Cryptog-
raphy in the entire system plays a fundamental role as it is used to solve the
Proof-of-Work problem to verify a transaction and create the bitcoin address,
which we will consider in this paper to evaluate the consequences.
A Bitcoin address [2] is a string consisting of 34 hexadecimal characters that
allow us to exchange money between different wallets. Therefore, it is a public
address, visible to all, necessary to carry out transactions. This address, how-
ever, represents the terminal process of a series of cryptographic steps based
on public and private keys. The first step is to create a private key used to
“sign” the authorization to execute a transaction. This key is based on a ran-
dom number between 1 and 2256 (Bitcoin generates a 256-bit number) defined
according to the elliptic curve used by the system [2]. In formal terms, the
random number is transformed into a 256-bit number via the hash function



Attention on SHA256 225

SHA256, and if the number is less than n − 1, where n = 1.158 · 1077, then
it is usable as a private key. In this case, the elliptic curve, also used in the
next stage of generating the public key, is secp256k1. This curve, based on
the discrete logarithm problem, produces an elliptic function on the field Zp,
where p = 2256 − 232 − 977 is a Fermat prime, given by y2 = x3 + 7 (repre-
sentation on R). A point P on the elliptic curve is generally represented by a
pair of coordinates (x, y) on a more visible field, such as R. A common way to
generate a private key is to exploit a single seed, and, in this case, the wallet is
called deterministic or “seeded”. The characteristic of these wallets is that the
seed used to generate the key is represented by a sequence of words (Mnemonic
Code Words) that uniquely generates a specific seed. The Mnemonic Words
are generated through a process indicated as BIP-39, which starts at a random
sequence of 128/256-bit determines the hash SHA256, which will be considered
a checksum in which the first bits are added to the random sequence. This
sequence is split into several sections, and each section is mapped through a
predetermined 2048 word dictionary [2]. At this point, the words obtained
are concatenated, possibly with the addition of a passphrase, and transformed
using the HMAC-SHA512 algorithm, which is based on SHA512, obtaining a
512-bit output that represents the seed. The left 256-bits of this seed represent
the master private key, denoted as k. This private key thus determined can be
used to construct the public key by multiplying it by a point called generator
point (G) belonging to secp256k1 so that the public key thus generated is still
a point of the elliptic curve [2]:

K = k ·G (5)

The new public key determined is a starting point to apply other cryptographic
functions to obtain the Bitcoin address. From K, the “Double Hash” (or
HASH160) is computed, which is based on the computation of the RIPEMD160
of K’s SHA256:

A = RIPEMD160(SHA256(K)) (6)

where A is the 160-bit Public Key Hash. RIPEMD160, created by Dobbertin
et al. [14], is considered the European antagonist of the MD5 hash and is
an evolution of the RIPEMD128, which was vulnerable to collisions. The
RIPEMD160 generates 160-bit output, and although there are later versions,
no collisions have yet been found. The hash A obtained undergoes a last
cryptographic process before becoming a Bitcoin address. In particular, it is
encoded through the Base58check, introduced in this system to make huge
numbers more visible through an alphanumeric representation. Base58 is an
evolution of Base64 in which several characters that could create ambiguities,
such as 0 and O, have been eliminated. In the case of the Bitcoin system,
a specific prefix is applied to the data to be converted, identified by 0x00.
A checksum, concatenated at the end, deriving from the application of the
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“double-SHA” (or SHA2) of which we consider only the first 4 bytes [2]. The
result of all this process is the Bitcoin address.
In summarizing, we can state that starting from a series of words making
up the wallet, it is possible to generate a specific hash that represents the
private key; from this private key, it is possible to generate a hash that rep-
resents the public key and finally from the latter it is possible to generate
an encoded hash that represents the Bitcoin address. Thanks to the different
cryptographic functions used, all these steps make the process one-way due to
the computational complexity. Remembering that the only value visible from
the outside to anyone in the Bitcoin address, if we suppose that the process
described in the previous section is true and therefore it is possible through
neural networks to “decrypt” the SHA256 hash and if the algorithm to solve
the problem of the discrete logarithm on elliptic curves (secp256k1) could be
implemented, then at the address it would be possible to go back to the private
key and “sign” the various transactions as if the owner of the wallet carried
them out. Furthermore, once the private key has been obtained, it would still
be possible to go back to the Mnemonic Words and therefore access the wallet
of other subjects.
The opportunity of “wallet theft” could have devastating effects on the global
economic system, not only because the ability of cryptographic algorithms to
encrypt information would fail but above all because the trust that investors
have in cryptocurrencies could fall. Since today cryptocurrencies are starting
to represent an essential part of the assets of large investors, a collapse in the
value of Bitcoins could mean burning billions of dollars. However, the ability
to access other people’s wallets could be helpful in some cases: since without
Mnemonic Words, it is impossible to access your wallet, if the owner were to
die, it would not be for the heirs to be able to access any inheritance. In this
situation, reversing the cryptographic process would be helpful.

5.1 Quantum Computing

An open question, however, is the problem of the discrete logarithm on el-
liptic curves due to its computational complexity. Since it’s not possible to
solve it with current tools, algorithms that exploit Quantum Computing have
been hypothesized. In the 1980s, physicist Feynman [15] completely revolu-
tionized the idea of automatic computing, providing some pioneering [16] ideas
that opened new horizons towards the new science defined today as Quantum
Computing. Feynman’s idea was to bring the phenomena of the “new” physics
(quantum mechanics) into the world of classical computer science to exponen-
tially increase the computational capacity of classical computers. Many articles
followed his path, in which an automatic system based on quantum formal-
ism is rigorously formulated ([6], [12], [7]) such as Quantistic Touring Machine
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(QTM), which is the quantum evolution of the classical Turing Machine. As
a result, a new computational complexity theory based on the new quantum
formalism emerges in these articles, where new complexity classes of problems
are introduced. The goal of using quantum computers is to demonstrate that
a given problem is in the BPP (Bounded-error Probabilistic Polynomial time)
class. Previous models of quantum computers are fundamentally based on two
“phenomena” belonging to the quantum formalism: the superposition principle
and entanglement. From the mathematical formalism of quantum mechanics
[40] we know that the natural framework of a quantum system is a complex
Hilbert space H and that the temporal evolution of states is marked by an or-
dinary differential equation on Hilbert spaces known today as the Schrödinger
equation. In the specific case of quantum computer science, the fundamental
quantistic system is the Qubit that is the quantistic translation of the classical
concept of Bit. Thus, being the qubit a quantistic system, we know that the
possible states of the qubit live in a complex Hilbert space. Then, the natural
question is: “Which Hilbert space represents the possible physical states of
our qubit?”. The answer to this question is strictly connected to the possible
measurement that we affect on our qubit. In particular, because the qubit has
to be a generalization of a classical bit, every time we effect measurement on
qubit, we can obtain only two possible values, which are 0 and 1. So in the case
of qubit physical system, we have to use a Hilbert complex space of dimen-
sion 2, in which we can find two linearly independent states |0〉 and |1〉, that
respectively represent the qubit state in which the probability of measuring 0
is 1, and the qubit state in which the probability of measuring 1 is 1. Thus if
|ψ〉 is a general state of our qubit, we can say that exists z0, z1 ∈ C such that

|ψ〉 = z0|0〉+ z1|1〉 (7)

that is the mathematical formulation of the superposition principle. More-
over, we have to say that the physical interpretation of the complex scalars
z0, z1 is strictly connected to the probability of measuring respectively 0 and 1.
Having described a physical system of a single qubit, to make the most of the
quantum effects on automatic computing, it is necessary to consider physical
systems formed by several qubits (more qubits correspond to an increase in
computing power). To consider more qubits, we need to exploit the quantum
phenomenon of entanglement, which consists in putting the states of each qubit
in a condition of strong correlation. This situation is mathematically formu-
lated through the tensorial product of Hilbert spaces; in particular, having n
qubits whose respective Hilbert spaces are H1, ...,Hn then the Hilbert space
that will represent the total physical system (in entangled) will be

H = H1 ⊗ ...⊗Hn. (8)

Thus, the Hilbert dimension of H (by the property of tensorial product) is
2n. The exponential growth of the size of H as the number of qubits varies



228 Francesco Colasanto et al.

clear that thanks to the superposition principle, through the use of quantum
logic networks (like Hadamard gate) and oracles (physical representation of the
unitary operator that allows the passage from one state to another) problems
that with classical computations required execution times with exponential
complexity, with the quantum approach admit high probability solutions with
polynomial complexity.
So, returning to the problem of reversing the cryptographic process, combining
what was said in the previous sections for decrypting the SHA256 outputs with
the Shor [29] algorithm (which demonstrates that the discrete logarithm is in
BPP, therefore solvable with a high level of probability in polynomial time)
we could reverse the one-way process that generates Bitcoin addresses.

6 Conclusions

Our core idea in this paper is to try to use the ability of neural networks to
“reverse” the cryptographic process, especially of SHA256. All this can be
done by considering the output of the hash functions as a string belonging
to a specific language. It is possible to obtain the links between different
n-grams of the string and consequently obtain a translation into a natural
language through attention mechanisms. In particular, in this model, the
Bahdanau’s attention was used through a Seq-2-Seq architecture, trying to
understand what could be the best split to apply to the characters of the
output string. Furthermore, we analyzed how cryptography intervenes in the
Bitcoin system, what consequences this method’s application could have, and
the use of quantum algorithms if the cryptographic process is reversed. In this
sense, the translation can be compared to a dictionary attack created by the
neural network.
In future works, it is possible to consider, instead of Seq-2-Seq, the architecture
of the transformers and increase the size of the dataset exponentially to see
what improvements it can bring. In addition, the text generation technique
could be used to create a dictionary based on the words present in the dataset
of this technique, which can be used to expand the translation.
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