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Abstract

In this paper, we solve the cartesian Poisson-Boltzman (PB) equation
in two-dimensions for a 2 : 1 electric charge unbalanced configuration.
We apply, the tanh, Ricatti functions and Jacobi elliptic solitary wave
methods, getting several families of solutions.
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1 Introduction

The Poisson-Boltzmann (PB) equation gives account of the electrostatic po-
tential of an electrolyte solution [1]. PB is a highly diffcult differential equation
to solve analytically. Basically, it is a Poisson equation with sources that are
exponential field dependent [2]. Therefore, its most direct and powerful ap-
plication is found in the framework of computational field, Delphi [3]-[4] and
Charmm [5]. In this work, we use analytical methods, known as solitary wave
solutions [6]-[9], in order to find solutions to electrical potential of an asym-
metrical electrolyte (2 : 1).

2 Two-dimensional Unbalanced

Poisson-Boltzmann equation

The unbalanced (2:1) cartesian Poisson-Boltzmann equation is:
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∂2φ

dx2
+
∂2φ

dy2
= −κ2(e(−2φ) − e(φ)) (1)

Here, κ−1 is the Debye screening length [1]. Using the transformation ξ = x+y,
and its second derivative, we get:

2
d2

dξ2
φ = κ2(−e(−2φ) + e(φ)) (2)

Now defining the variable and the first and second derivative

v = v0e
φ,

dφ

dξ
=

1

v

dv

dξ
,
d2φ

dξ2
= − 1

v2
(
dv

dξ
)2 +

1

v

d2v

dξ2
(3)

And replacing in eqs. (2)

−v0(
dv

du
)2 + v0v

d2v

du2
+
κ2

2
v30 −

κ2

2
v3 = 0 (4)

Now, we introduce a new independent variable [6]:

Y = tanh (µu) (5)

Then, the derivatives of u, are:

d

du
= µ(1− Y 2)

d

dY
,

d2

du2
= −2Y µ2(1− Y 2)

d

dY
+ µ2(1− Y 2)2

d2

dY 2
(6)

The solutions are postulated as [6]:

v =
m∑
i=1

aiY
i (7)

Then replacing

−2v0vµ
2Y (1− Y 2)

dv

dY
+ v0vµ

2(1− Y 2)2
d2v

dY 2
(8)

−v0µ2(1− Y 2)2(
dv

dY
)2 +

κ2

2
v30 −

κ2

2
v3 = 0

Now, we balance the highest-order linear derivative with the highest order
nonlinear terms in eq. (8). So, vY 4 d2v

dY 2 → v3 → m = 2. So, replacing in eq.
(7), we obtain:
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v = a0 + a1Y + a2Y
2 (9)

Replacing in eq. (8), we get a polynomial in Y i and order by order in Y i we
obtain a set of equations. Doing some algebra, we get:

f1 → (a0 = −v0
2
, a1 = 0, a2 = 3

v0
2
, κ = −2µ

√
2

3
) (10)

f2 → (a0 = −v0
2
, a1 = 0, a2 = 3

v0
2
, κ = 2µ

√
2

3
) (11)

f3 → (a0 = −(−1)2/3
v0
2
, a1 = 0, a2 = (−1)2/33

v0
2
, κ = −2(−1)−1/3µ

√
2

3
) (12)

f4 → (a0 = −(−1)2/3
v0
2
, a1 = 0, a2 = (−1)2/33

v0
2
, κ = 2(−1)−1/3µ

√
2

3
) (13)

f5 → (a0 = (−1)1/3
v0
2
, a1 = 0, a2 = −(−1)1/33

v0
2
, κ = −2(−1)−2/3µ

√
2

3
) (14)

f6 → (a0 = (−1)1/3
v0
2
, a1 = 0, a2 = −(−1)1/33

v0
2
, κ = 2(−1)−1/3µ

√
2v0
3

) (15)

Then, we get six families of solutions.

3 Solitary wave method 2, Solutions Riccati

equation

We use using the method presented in [7], to get solutions for eqs. (4). So:

v =
n∑
i=1

aiF
i (16)

where F solves, table (1), the Riccati equation, then:
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A1 C1 F
1 1/2 -1/2 coth(ξ)± cosh(ξ), tanh(ξ)± isech(ξ)
2 1/2 1/2 sec(ξ)± itan(ξ)
3 -1/2 - 1/2 csc(ξ)± icot(ξ)
4 1 - 1 tanh(ξ) , coth(ξ)
5 1 1 tan(ξ)
6 -1 -1 cot(ξ)

Table 1: Solutions for eqs. (17), [7] .

F
′
= (C1F

2 + A1), F
′′

= 2C1F (C1F
2 + A1) (17)

here A1 and C1 are constants, table (1). Replacing in eqs. (4), and balancing
nonlinear terms, we have n = 2. Then, eq. (16) is, v = (a0 + a1F + a2F

2).
Therefore, the derivatives are:

v
′
= (a1 + 2a2F )F

′
= (a1 + 2a2F )(C1F

2 + A1), v
′′

= ((2a2F
′
)F

′
(18)

+(a1 + 2a2F )F
′′
) = (2a2(C1F

2 + A1)
2 + (a1 + 2a2F )2C1F (C1F

2 + A1))

Replacing in eq. (4), we obtain a group of algebraic equations, order by order
in F i. And doing some algebra, we get:

g1 ← (a1 = 0, a2 =
3C1a0
A1

, κ = −2i

√
2A1C1

3
, v0 = −2a0) (19)

g2 ← (a1 = 0, a2 =
3C1a0
A1

, κ = 2i

√
2A1C1

3
, v0 = −2a0) (20)

g3 ← (a1 = 0, a2 =
3C1a0
A1

, κ = −2(−1)1/6
√

2A1C1

3
, v0 = 2(−1)1/3a0) (21)

g4 ← (a1 = 0, a2 =
3C1a0
A1

, κ = 2(−1)1/6
√

2A1C1

3
, v0 = 2(−1)1/3a0) (22)

g5 ← (a1 = 0, a2 =
3C1a0
A1

, κ = −2(−1)5/6
√

2A1C1

3
, v0 = −2(−1)2/3a0) (23)

g6 ← (a1 = 0, a2 =
3C1a0
A1

, κ = 2(−1)5/6
√

2A1C1

3
, v0 = −2(−1)2/3a0) (24)

Then, we get thirty six families of solutions, gi, using Ricatti method [7].
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ε a b c G
1 −1 −m2 1 1 sn(ξ)
2 −1 m2 1−m2 1 cn(ξ)
3 −1 1 m2 − 1 1 dn(ξ)
4 −1 −m2 1 1 cd(ξ)
5 m2 − 1 m2 1 1 sd(ξ)
6 1−m2 1 −1 1 nd(ξ)
7 1 1 −m2 −1 dc(ξ)
8 1 1−m2 m2 −1 nc(ξ)
9 1 1−m2 1 1 sc(ξ)
10 1 1 −m2 −1 ns(ξ)
11 1 1 m2 − 1 m2 ds(ξ)
12 1 1 1−m2 1 cs(ξ)

Table 2: The Solutions for eq. (25), [8] .

4 Solitary wave method 3, Jacobi solutions

We start with the solutions, table (2), given by the next differential equation:

(G
′
)2 = (c+ εG2)(aG2 + b) (25)

Where a, b, c and ε are given in table (2). Also, they satisfy the next relations:

sn(ξ, k)2 + cn(ξ, k)2 = k2sn(ξ, k)2 + dn(ξ, k)2 = 1 (26)

1 + cs(ξ, k)2 = k2 + ds(ξ, k)2 = ns(ξ, k)2

(1− k2)sd(ξ, k)2 + 1 = dc(ξ, k)2 = (1− k2)nc(ξ, k)2 + k2

k2(1− k2)sd(ξ, k)2 = k2(cd(ξ, k)2 − 1) = (1− k2)(1− nd(ξ, k)2)

and k
′
= sqrt(1− k2)

sn(iξ, k) = (i)sn(ξ, k
′
), dc(iξ, k) = dn(ξ, k

′
) (27)

cn(iξ, k) = nc(ξ, k
′
), nc(iξ, k) = cn(ξ, k

′
)

dn(iξ, k) = dc(ξ, k
′
), sc(iξ, k) = (i)sn(ξ, k

′
)

cd(iξ, k) = nd(ξ, k
′
), ns(iξ, k) = (−i)cs(ξ, k′

)

sd(iξ, k) = (i)nd(ξ, k
′
), ds(iξ, k) = (−i)ds(ξ, k′

)

nd(iξ, k) = cd(ξ, k
′
), cs(iξ, k) = (−i)ns(ξ, k′

)

and the second derivative is:
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G
′′

= 2aε2G3 + (ac+ bε)G (28)

We use a version of the method given in [9], where the solutions to eq. (4),
are given by;

v =
n∑
i=1

aiG
i (29)

Balancing nonlinear terms in eq. (4), we have n = 2, the solution is:

v = (a0 + a1G+ a2G
2) (30)

Then, we obtain a group of equations, order by order in Gi. And doing algebra,
we get:

g1 ←
{
a0 = 0, a1 =

1

2e
, a2 = 0, b =

i
√
aκv0√
2
√
e
, c = −i

√
eκv0√
2
√
a

}
(31)

g2 ←
{
a0 = 0, a1 =

1

2e
, a2 = 0, b = −i

√
aκv0√
2
√
e
, c =

i
√
eκv0√
2
√
a

}
(32)

Then, we get twenty four families of solutions, gi, using Jacobi solutions [8]-[9].

5 Conclusions

In this paper, we solve the unbalanced (2 : 1) Cartesian Poisson-Boltzmann
equation applying several solitary wave methods. Then, using tanh method we
find six families of solutions. Also, using the Ricatti functions, we get thirty
six families of solutions. At last, utilizing Jacobi elliptic functions, we obtain
twenty four families of solutions. In general, the solutions are:

φ = ln (
a0 + a2 tanh2 (µu)

v0
), φ = ln (

a0 + a2F
2(u)

v0
), φ = ln (

a0 + a1G(u)

v0
) (33)
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