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Abstract

In this work, we discuss Jordan algebras connected to Lie groups,

as well as how they relate to Lie algebras. As an application, we study

Jordan algebra of the special unitary groups, special linear algebra and

special orthogonal groups.
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1 Introduction

Let B be a vector space over a field F, let a, b ∈ B, then B is a Jordan algebra

with product {a, b} = ab + ba. The vector space B with the commutator

[a, b] = ab − ba is a Lie algebra. If char F = 2, meaning that 1 + 1 =

0 and 1 = −1, then we can say that the Lie algebra equal to the Jordan

algebra (ab + ba = ab − ba). The paper at hand considers Lie and Jordan

algebra that have finite dimensions over fields R or C of characteristic zero.

The fundamental goal of this research is to keep using Lie groups and Jordan

algebras to advance these sciences. The following question serves as a starting

point:

• Is it possible to link the Jordan algebra to the Lie group to facilitate the
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application of definitions and theorems to numbers to be clearer and more

accurate in understanding?

Previous research has indicated that the Lie algebra is simply the identities

tangent space with a Lie bracket. We know that the Lie triple system A is a

generalization of the Lie algebra. There exists the relation between Lie and

Jordan triple system:

[a, b, c] = abtc+ cbta− batc+ catb, ∀ a, b, c ∈ A.

The main results in this paper are:

1. Jordan algebras to Lie groups are the same as Lie algebras of Lie groups,

with the difference in the product commutator.

2. Giving several examples on Jordan algebras taken from Lie algebras in

addition to detailing in the special unitary group su(3).

The work was broken into the following sections: In Section 1 we mention

some definitions relevant to our work. Our results, we study in detail in the

second section.

2 Lie groups and Jordan algebras

In this section, we review several facts and concepts of Lie groups and Jordan

algebras. The definition of a Lie group is given below.

Definition 2.1. A Lie group G is a C∞ manifold and G is a group such that:

1. π : G×G −→ G ; (g, h) 7−→ gh

2. inv : G −→ G;x 7−→ x−1

π and inv are both C∞.

Lie and Jordan algebras are not associative. A definition of Jordan algebra

is as follows:

Definition 2.2. A Jordan algebra is an algebra A+ over a field F, whose

product meets the axioms listed below. For all a, b ∈ A+ we have:

1. {a, b} = {b, a}, (commutativity).

2. {
{
a2, b

}
, a} = {a2, {b, a}}, (Jordan identity).
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Definition 2.3. A vector space M over a field F which endowed with a trilinear

mapping {∗, ∗, ∗}: M×M×M −→M. If the following requirements are met,

the system is a Jordan triple system: For all u, v, w, x, y ∈M
1. {u, v, w} = {w, v, u}.

2. {x, y, {u, v, w}} − {u, v, {x, y, w}} = {{x, y, u}, v, w} −
{u, {y, x, v}, w}.

Lemma 2.1. The Jordan triple system M with respect to the product

{b1, b2, b3} = b1b
t
2b3 + b3b

t
2b1.

Where bt2 denotes the transpose matrix of b2 and b1, b2, b3 ∈M.

In the following, we recall the Lie algebra of a matrix Lie group and give

an example of that:

Theorem 2.1. Let g be a topologically closed subgroup of GL(n, F) define

g =
{
x ∈ GL(n, F) : etx ∈ G, ∀ t ∈ R

}
,

where ex the exponential function. Then:

1. g is a vector space.

2. For all x, y ∈ g ⇒ [x, y] = xy − yx ∈ g.

3. g is parallel to tangent space of G at I.

4. exp : g → G is locally invertible.

Example 2.1. The effect of the special linear group using the exponential

function.

We have:

exp : gl(n, R)→ GL(n, R)

SL(2, C) =
{(x y

z w

)
: det exp t

(
x y

z w

)
= 1
}

det exp t

(
x y

z w

)
= det exp

(
1 + tx ty

tz 1 + tw

)
= (1 + tx)(1 + tw)− t2yz
= 1 + t(x+ w) = 1, ∀ t

d

dt

∣∣∣∣
t=0

det exp t

(
x y

z w

)
= x+ w = 0.

Hence, sl(2, C) =
{(x y

z w

)
: Trace

(
x y

z w

)
= 0
}
.
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3 Main Results

We aim in this section to consider the relation between Lie groups of Lie

algebras and link them with Jordan algebras.

Theorem 3.1. The Lie algebra sl(2, C) is a Jordan algebra.

Proof. We know that the basis for sl(2, C) are

e12 =

(
0 1

0 0

)
, e21 =

(
0 0

1 0

)
, e1(−1) =

(
1 0

0 −1

)
.

Now, we study the conditions of Jordan algebra: If a = e1(−1) and b = e21 in

Definition 2.2, then

1.

{e1(−1), e21} =

(
0 0

0 0

)
= {e21, e1(−1)}

2. {
{e21(−1), e21}, e1(−1)

}
= {e21(−1), {e21, e1(−1)}{

{
(

1 0

0 1

)
, e21}, e1(−1)

}
=

{(
1 0

0 1

)
, {e21, e1(−1)}

}
{(

0 0

2 0

)
, e1(−1)}

}
=

{(
1 0

0 1

)
,

(
0 0

0 0

)}
(

0 0

0 0

)
=

(
0 0

0 0

)
.

Therefore, sl(2, C) is the Jordan algebra.

Theorem 3.2. The Lie algebra so(3, R) is a Jordan algebra.

Proof. We have:

so(3, R) = {f : f ∈ gl(3, R) such that f t = −f}

The basis of so(3, R) are:

f1 =

 0 0 0

0 0 −1

0 1 0

 , f2 =

 0 0 1

0 0 0

−1 0 0

 and f3 =

 0 −1 0

1 0 0

0 0 0

 .

If we take a = f1 and b = f2 in Definition 2.2, then
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1. {f1, f2} = {f2, f1}, where {f1, f2} = f1f2 + f2f1.

2. {{f 2
1 , f2}, f1} = {f 2

1 , {f2, f1}}.

Thus, the conditions are fulfilled. So, so(3, R) is a Jordan algebra.

The following theorem be demonstrated the special unitary group of di-

mension 3× 3 in detail.

Theorem 3.3. The Lie algebra su(3, C) is a Jordan algebra and Jordan triple

system.

Proof. Let us specify what kind of groups U(n) and SU(n):

1. The unitary group is described as follows:

U(n) = {U ∈Mat(n,C) : Ū tU = UŪ t = In, such that Ū t = U−1}.

2. The special unitary group is described as follows:

SU(n) = {U ∈ U(n) : det(U) = 1}.

If n = 3, SU(3) = {U ∈ U(3) : det(U) = 1}. The number of basis of

SU(3) equal to n2 − 1 = 8. We study the Jordan algebra and Jordan

triple system of SU(3) as follows: the basis of a Gell-Mann matrices are:

λ1 =

 0 1 0

1 0 0

0 0 0

 λ2 =

 0 −i 0

i 0 0

0 0 0

 λ3 =

 1 0 0

0 −1 0

0 0 0


λ4 =

 0 0 1

0 0 0

1 0 0

 λ5 =

 0 0 −i
0 0 0

i 0 0

 λ6 =

 0 0 0

0 0 1

0 1 0


λ7 =

 0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 .

These matrices are the basis of su(3). The Jordan algebra conditions are:

(i) The first condition is discussed in detail.
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(ii) For example, if we take, λ1, λ2, then {{λ21, λ2}, λ1} = {λ21, {λ2, λ1}}. The

first condition of Jordan algebra of su(3) as follows: if i = j, then

{λ1, λ1} =

 2 0 0

0 2 0

0 0 0

{λ2, λ2} =

 2 0 0

0 2 0

0 0 0

 {λ3, λ3} =

 2 0 0

0 2 0

0 0 0


{λ4, λ4} =

 2 0 0

0 0 0

0 0 2

{λ5, λ5} =

 2 0 0

0 0 0

0 0 2

 {λ6, λ6} =

 0 0 0

0 2 0

0 0 2



{λ7, λ7} =

 0 0 0

0 2 0

0 0 2

{λ8, λ8} =


2

3
0 0

0
2

3
0

0 0
8

3


Therefore, if i = j, {λi, λj} =

4

3
I3 +

1

2
dijkλ8. Where dijk equal:

{λ1, λ1} =
4

3
I3 +

1

2

1√
3
λ8, {λ2, λ2} =

4

3
I3 +

1

2

1√
3
λ8

{λ3, λ3} =
4

3
I3 +

1

2

1√
3
λ8, {λ4, λ4} =

4

3
I3 +

1

2
(− 1

2
√

3
)λ8

{λ5, λ5} =
4

3
I3 +

1

2
(− 1

2
√

2
)λ8, {λ6, λ6} =

4

3
I3 +

1

2
(− 1

2
√

3
)λ8

{λ7, λ7} =
4

3
I3 +

1

2
(− 1

2
√

3
)λ8, {λ8, λ8} =

4

3
I3 +

1

2
(− 1√

3
)λ8

On the other hand, if i 6= j, then

{λ1, λ2} = 0 = {λ2, λ1} {λ1, λ3} = 0 = {λ3, λ1} {λ1, λ4} = λ6 = {λ4, λ1}
{λ1, λ5} = λ7 = {λ5, λ1} {λ1, λ6} = λ4 = {λ6, λ1} {λ1, λ7} = λ5 = {λ7, λ1}

{λ1, λ8} =
2
√
3

3
λ1 = {λ8, λ1}.

{λ2, λ3} = 0 = {λ3, λ2} {λ2, λ4} = −λ7 = {λ4, λ2} {λ2, λ5} = λ6 = {λ5, λ2}

{λ2, λ6} = λ5 = {λ6, λ2} {λ2, λ7} = −λ4 = {λ7, λ2} {λ2, λ8} =
2
√
3

3
λ2 = {λ8, λ2}.

{λ3, λ4} = λ4 = {λ4, λ3} {λ3, λ5} = λ5 = {λ5, λ3} {λ3, λ6} = −λ6 = {λ6, λ3}

{λ3, λ7} = −λ7 = {λ7, λ3} {λ3, λ8} =
2
√
3

3
λ3 = {λ8, λ3}.
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{λ4, λ5} = 0 = {λ5, λ4} {λ4, λ6} = λ1 = {λ6, λ4} {λ4, λ7} = −λ2 = {λ7, λ4}

{λ4, λ8} = −
√
3

3
λ4 = {λ8, λ4}.

{λ5, λ6} = λ2 = {λ6, λ5} {λ5, λ7} = λ1 = {λ7, λ5} {λ5, λ8} = −
√
3

3
λ5 = {λ8, λ5}.

{λ6, λ7} = 0 = {λ7, λ6} {λ6, λ8} = −
√
3

3
λ6 = {λ8, λ6}.

{λ7, λ8} = −
√
3

3
λ7 = {λ8, λ7}.

Hence, if i 6= j, then {λi, λj} = aiεijkλk. Where ai =

√
3

3
or

2
√

3

3
. For all

i, j = 1, 2, 3, 4, 5, 6, 7 and {λ8, λi} = aiεijkλi.

Now, we study the Jordan triple system of su(3) : the conditions of the

Jordan triple system as true of su(3). The case if i = j = k, then

{λ1, λ1, λ1} = 2λ1 {λ2, λ2, λ2} = −2λ2 {λ3, λ3, λ3} = 2λ3 {λ4, λ4, λ4} = 2λ4

{λ5, λ5, λ5} = −2λ5 {λ6, λ6, λ6} = 2λ6 {λ7, λ7, λ7} = −2λ7 {λ8, λ8, λ8}

= 2(

√
3

9
)λ8.

So, if i = j = k, {λi, λi, λi} = 2εijkaiλi. The case i 6= j 6= k it is achieved sim-

ilarly, as in the case of the Jordan algebra, with the difference in the process

of multiplying the bracket set. Consequently, the algebra su(3) is the Jordan

algebra and Jordan triple system.

Thus, from theorems on this section: we can say that

Corollary 3.4. The Jordan algebra relationship with Lie group is the same as

the relationship of the Lie algebra of the Lie group.
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