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Abstract 

 

Wind direction is an important aspect to be analysed to forecast the weather. In this 

study, we statistically investigate the relationship of wind direction data in Malacca, 

Malaysia during southwest monsoon in the year 2019 and 2020. The circular nature 

of wind direction requires the data to be analysed differently from linear data. We 

model wind direction data with the von Mises distribution by using an Error-in-

Variables model, particularly functional relationship model. The goodness-of-fit of 

the data is supported by the QQ plots. The parameters of the model are estimated 

with maximum likelihood estimation and the covariance of the parameters are 

obtained by using Fisher Information matrix. The results show that the wind 

direction data in Malacca has a rotation parameter of 0.37348 with the concentration 

parameter of the error of 1.56960. The information of this study may be used for a 

better understanding in the prediction of wind energy. 
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1 Introduction  
 

Wind direction is an important aspect in wind energy. The data of wind 

direction is circular in nature. Other than wind direction, circular data arises in 

broad fields such as paleomagnetism, wildfire orientation and bioinformatics [1]. 

In ecology, data on the movement direction of animals is investigated and in 

medical sciences, protein structure is studied [2]. Circular data are a component in 

which directions can be described in a two-dimensional space, with the unit circle 

serving as the corresponding sample space [3]. The measurement is from 0° to 360°, 
or from 0 radian to 2𝜋 radians. Regular statistical analysis that is applied to linear 

data is not suitable for circular data due the wrapped around nature of a circle [4].  

In this paper, our aim is to propose an error-in-variables model (EIVM), 

specifically the functional relationship model to the circular wind direction in 

Malacca, Malaysia during southwest monsoon in the years 2019 and 2020. 

Malacca, situated on the south-western coast of the Peninsular Malaysia (2.29 °N, 

102.30 °E), has been listed as a UNESCO World Heritage Site [5]. Peninsular 

Malaysia is approximately 500 miles from north to south and about 200 miles from 

east to west. The local climate is tropical, with yearly monsoons of the southwest 

and northeast [6].  

The von Mises distribution is widely employed to study circular data. The 

von Mises distribution is a circular analogue of the normal distribution [7]. A von 

Mises distribution, like a normal distribution, is symmetrical and unimodal, with 

concentration around the mean diminishing to form a bell shape [8]. This 

distribution is appropriate to model periodic variables [9].  

The use of the distribution is frequently discussed in the literature. In 2017, 

the von Mises distribution was applied to model the sea turtle navigation, wolf 

movement and brain tumour growth [10]. In engineering, this distribution was 

applied to model the audio-source directions [11]. The circular variables associated 

with audio-source translation is directly modelled by the von Mises distribution. 

The probability distribution function of the Von Mises distribution is given by  

𝑔(𝜃; 𝜇, 𝜅) =
1

2𝜋𝐼0(𝜅)
exp(𝜅 cos(𝜃 − 𝜇)) (1) 

where  is the modified Bessel function of the first kind and order zero, defined 

by  

𝐼0(𝜅) =
1

2𝜋
∫ exp(𝜅 cos 𝜃) 𝑑𝜃

2𝜋

0

 (2) 

where 𝜇 is the mean direction and 𝜅 is the concentration parameter for 0 ≤ 𝜃 <
2𝜋  and  𝜅 > 0. The concentration parameter denotes the distribution's spread [12]. 

 

2 Error-in-Variables Model 
 

The functional relationship model is a type of EIVM. The EIVM differs from the 

traditional linear regression model in that the variables are obscured by measuring  

)(0 I
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error [13]. In a traditional regression model, independent variables are assumed to 

be true, while dependent variables have estimation errors. Variable errors can be 

influenced by a lot of factors such as sampling error. Errors can be present in the 

independent variables too [14].  

In EIVM, both variables x and y are considered with errors [15]. In fact, 

measuring errors occur in measurements, and ignoring these errors can have a direct 

impact on the estimators' desirable criteria [16]. EIV issues usually arise where the 

aim of the modelling is to gain physical insight into an operation [17]. EIVM is 

indeed the most statistically appropriate methodology for estimating reactivity 

ratios because it takes into account the existence of error throughout all variables 

[18]. 

 There are three types of EIVM, namely functional, structural and 

ultrastructural EIVM. The statistical properties of the variables in a functional 

relationship model are fixed. Meanwhile, the variables in the structural relationship 

model are random, while the variables in the ultrastructural relationship model are 

a combination of the functional and structural relationship models [19]. Some 

examples of the application of EIVM were the description of the total nitrogen 

content of sandalwood in the forest farm in Hainan Province China and the research 

in measuring the level of carbon dioxide that polluted an urban environment [20]. 

 

 

3 Parameter Estimation 
 

In this study, we model the wind direction data of Malacca by using a functional 

relationship model for circular data [25]. The model is given by  

𝑌 = 𝛼 + 𝑋 (𝑚𝑜𝑑  2𝜋)  (3) 

where the X and Y variables are considered with the random errors 𝛿𝑖 and 𝜀𝑖, 
respectively, where 𝑋𝑖 = 𝑥𝑖 + 𝛿𝑖 and 𝑌𝑖 = 𝑦𝑖 + 𝜀𝑖.  

The errors are distributed with von Mises distribution of 𝛿𝑖~𝑉𝑀(0, 𝜅) and 

𝜀𝑖~𝑉𝑀(0, 𝜅) [21]. The parameter estimation is derived by using the method of 

maximum likelihood. The log-likelihood function of the distribution is given by 

 
𝑙𝑜𝑔 𝐿 (𝛼, 𝜅, 𝑋; 𝑥, 𝑦) = −2𝑛 𝑙𝑜𝑔 2𝜋 − 2𝑛 𝑙𝑜𝑔 𝐼0 (𝜅) 

                             + 𝜅∑𝑐𝑜𝑠(𝑥𝑖 − 𝑋𝑖)

𝑛

𝑖=1

+ 𝜅∑𝑐𝑜𝑠(𝑦𝑖 − 𝛼 − 𝑋𝑖)

𝑛

𝑖=1

 
(4) 

for 0 ≤ 𝑥 < 2𝜋 ,  0 ≤ 𝑦 < 2𝜋  and  𝜅 > 0 where 𝐼0(𝜅) is the modified Bessel 

function of the first kind and order zero, which can be defined by : 

𝐼0(𝜅) =
1

2𝜋
∫ 𝑒𝜅 𝑐𝑜𝑠𝜃𝑑𝜃

2𝜋

0

 (5) 

where 𝜅 is the concentration parameter of the measurement error. 

The estimation of the variable 𝑋𝑖 is obtained iteratively given by 

𝑋̂𝑖1 ≈ 𝑋̂10 +
𝑠𝑖𝑛(𝑥𝑖 − 𝑋̂𝑖0) + 𝑠𝑖𝑛(𝑦𝑖 − 𝛼̂ − 𝑋̂𝑖0)

𝑐𝑜𝑠(𝑥𝑖 − 𝑋̂𝑖0) + 𝑐𝑜𝑠(𝑦𝑖 − 𝛼̂ − 𝑋̂𝑖0)
 (6) 
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and the estimation of the rotation parameter is given by 

𝛼̂ =

{
 
 

 
 𝑡𝑎𝑛−1 {

𝑆

𝐶
}              when 𝑆 > 0, 𝐶 > 0

𝑡𝑎𝑛−1 {
𝑆

𝐶
}  + 𝜋       when 𝐶 < 0

𝑡𝑎𝑛−1 {
𝑆

𝐶
}  + 2𝜋     when 𝑆 < 0,𝐶 > 0

 (7) 

where 𝑆 = ∑ 𝑠𝑖𝑛(𝑦𝑖 − 𝑋̂𝑖)
𝑛
𝑖=1  and 𝐶 = ∑ 𝑐𝑜𝑠(𝑦𝑖 − 𝑋̂𝑖)

𝑛
𝑖=1 .

  

The Fisher approximation is applied to estimate the concentration parameter 

𝜅 for the case of equal error concentration [22]. The approximation is given by: 

𝐴1
−1(𝑤) =

{
 
 

 
 2𝑤 + 𝑤3 +

5

6
𝑤3                    when 𝑤 < 0.53

−0.4 + 1.39𝑤 +
0.43

(1 − 𝑤)
   when 0.53 ≤ 𝑤 < 0.85

1

𝑤3 − 4𝑤2 + 3𝑤
                    when 𝑤 ≥ 0.85

 (8) 

Thus, the estimation becomes 

𝜅̂ = 𝐴1
−1(𝑤) where   𝑤 =

1

𝑛
{∑ 𝑐𝑜𝑠(𝑥𝑖 − 𝑋̂𝑖) +

𝑛
𝑖=1 ∑ 𝑐𝑜𝑠(𝑦𝑖 − 𝛼̂ − 𝑋̂𝑖)

𝑛
𝑖=1 }.

 

(9) 

Thus, it is  

𝜅̂ = 𝐴1
−1 (

1

𝑛
{∑𝑐𝑜𝑠(𝑥𝑖 − 𝑋̂𝑖)

𝑛

𝑖=1

+∑𝑐𝑜𝑠(𝑦𝑖 − 𝛼 − 𝑋̂𝑖)

𝑛

𝑖=1

}) (10) 

For circular data, the estimation of a concentration parameter is to be 

corrected by dividing it by 2 [21]. Hence, the estimate becomes 𝜅̃ =
𝜅̂

2
. 

 

4 Outlier Identification 
 

Outliers are data points that deviate dramatically from the rest of the data set [23]. 

Spotting outliers yields substantial actionable information in a wide range of 

applications, such as fraud detection [24]. In this section, covratio method is studied 

to detect the presence of outlier for circular data [21]. The covratio statistics is 

constructed from the Fisher Information matrix of the parameter estimates. It is 

defined by 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) =
|𝐶𝑂𝑉|

|𝐶𝑂𝑉(−𝑖)|
 (11) 

where |𝐶𝑂𝑉| is the determinant of the covariance matrix of the parameter estimates 

is given by 

|𝐶𝑂𝑉| =
1

𝑛2𝜅̃[𝐴′1(𝜅̃)]2
 

(12) 

and |𝐶𝑂𝑉(−𝑖)| is the determinant of the covariance matrix for the reduced data set 

by excluding the i-th row.  

The cut-off equation for outlier detection in bivariate functional relationship 

model for circular data with 𝑦 = 3.7586𝑛−0.71. Since the sample size used for this  
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study is n =139, thus the cut-off point becomes  𝑦 = 3.7586𝑛−0.71 = 0.113106. 

This cut-off equation is used to detect the outlier for the wind direction data in this 

study. 

 

 

5 Results 
 

The preliminary univariate analysis of Malacca wind direction data during the 

southwest monsoon is described graphically with the rose diagrams for the years 

2019 and 2020. Figures 1 and 2 are the rose diagrams of the wind direction data of 

Malacca in 2019 and 2020, respectively.  

From the rose diagrams, we can see that the patterns of the data for both years 

are different. Hence, in this study, we investigate the relationship of the data for 

both years and describe it in the form of EIVM, specifically with the bivariate 

functional relationship model for circular wind direction data. 
 

 
Figure 1. The rose diagram of 

Malacca wind direction data in 2019. 

 
Figure 2. The rose diagram of 

Malacca wind direction data in 2020.

 

The Q-Q plots of the von Mises distribution for Malacca wind direction data 

during southwest monsoon of both years 2019 and 2020 are shown in Figures 3 and 

4, respectively. The QQ-plot is a graphical method for determining the suitability 

of a statistical approach for the data at hand [4]. 
 

 
Figure 3. Von Mises Q-Q plot of 

wind direction data during southwest 

monsoon in 2019 

 

 
Figure 4. Von Mises Q-Q plot of wind 

direction data during southwest 

monsoon in 2020. 
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We try to figure out if any outlier presents in the data. The values of 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂(−𝑖) for the wind direction data are described in Figure 5 and none of 

the values exceeds the cut-off equation of y = 0.113106. Therefore, no observation 

is categorised as the outlier. Hence, the wind direction data during southwest 

monsoon of Malacca is modelled without having to eliminate any of the data.  

 

 
Figure 5. Outlier detection of Malacca wind direction data using covratio 

statistics. 

 

The data is then fitted to the functional relationship model that is discussed in 

Sections 3 and 4. Table 1 shows the values of parameter estimate for the data. 
 

Table 1. Parameter estimates of Malacca wind direction data. 

Detail Value 

Rotation parameter, 𝜶̂ 0.37348 

Variance of 𝜶̂ 0.01496 

Concentration parameter, 𝜿̃ 1.56960 

Variance of 𝜿̃ 0.01538 

 

From Table 1, the model proposed for wind direction data of Malacca during 

southwest monsoon season in 2019 and 2020 is 𝑌 = 0.37348 + 𝑋 (𝑚𝑜𝑑 2𝜋) with 

a small error concentration parameter of 1.56960. The parameter estimates show 

that the rotation parameter is 0.37348 which is very near to 0 radians. The variance 

of 𝛼̂ and 𝜅̃ are small given by 0.01496 and 0.01538, respectively, which indicate 

the consistency of the estimated parameters. Also, the variances show that the 

values are less dispersed. 

 

6 Conclusion 
 

As a conclusion, this study proposes a statistical model of wind direction data in 

Malacca, Malaysia during southwest monsoon season in 2019 and 2020 by using 

an error-in-variables model, specifically the bivariate functional relationship model. 

In this model, both of the variables x and y are considered with the presence of error  
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terms. The covratio statistics is adopted in determining if there is any outlier exists 

in the data. It shows that there is no outlier presents in the data. The parameters of 

this data are estimated by using the maximum likelihood method of the von Mises 

distribution. The results show that the rotation parameter is very near to 0 radian 

and the value of the concentration parameter of the error terms is small and less 

concentrated. This model may be applied to forecast the wind direction of Malacca 

during the southwest monsoon and to aid in the management of outdoor activities 

while keeping safety and weather in account. 
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