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Abstract
In this paper, we consider the cryptocurrencies market and in par-

ticular, we try to point out an “affinity” between the system of agents
trading in cryptocurrencies and statistical mechanics. We focus our
study on the concept of entropy in the sense of Boltzmann and we try
to extend such a definition to a model in which the particles are replaced
by N economic subjects (agents). The agents are completely described
by their ability to buy and to sell a certain quantity of cryptocurren-
cies. We provide some numerical examples by applying the model to
the closing prices of the main six cryptocurrencies and we show that
entropy can provide information about the position of economic agents
in the phase space through the closing price.
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1 Introduction

Trying to model the price trend of financial instruments has always been the
focus of finance. Traditional theories are based on the search for significant
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variables that can explain the trend, such as Fama and French [13] that use
expected returns to generate temporary price components; or Campbell and
Shiller [6] that use accounting earnings data or Perasan and Timmermann [26]
who consider the power of various macroeconomic factors on the markets. The
evolution of the theory has pushed towards non-linear models such as Laffont,
Ossard and Vuong [21] where an approach based on the method of nonlinear
least squares is used or Qi [29] who proposes the use of neural networks based
on linear regressions. Subsequently, when Brissaud [5] assimilated entropy
to disorder, this instrument which had always been applied in physics also
became part of finance.
Since the mid-19th century, entropy has been a key element linking mechanics
to thermodynamics. The first to introduce this concept was Clausius [9], whose
definition was applied to a thermodynamic system that performs a transfor-
mation; however, this entropy suffered from a conceptual problem which, as
demonstrated by Gibbs [14], was revealed in the case of identical gases (Gibbs
Paradox ). He solved this problem by changing the count of states: in his
definition, the number of states is based on the probability that each of these
occurs during the fluctuations of the system. On the other hand, Boltzmann
[4] presented his statistical interpretation of thermodynamic entropy, manag-
ing to link the macroscopic properties of a system with the microscopic ones.
Based on Gibbs, in 1949 Shannon [33] developed a theory capable of evaluating
the amount of information that is lost in receiving a message from a source to
a recipient or, conversely, understanding what is the maximum possible com-
pression of information without loss. This form of entropy was generalized by
Rényi [30] and Tsallis [37] in a parameter-dependent Shannon entropy; applied
by Adler [1] in the topology of dynamic systems as a measure of complexity;
redefined by Pincus [28] (approximate entropy) usable for quantifying the reg-
ularity of information without knowing the system and - more recently - used
by Chen [8] as a time series regularity measure.
It was the development of entropy in information theory that made it widely
used in finance, in particular the generalizations of Shannon, Réyni and Tsallis
contributed to creating a new line of application for the management of finan-
cial portfolios: Philippatos and Wilson [27] showed that entropy is a more
effective indicator of standard deviation; Usta and Kantar [38] used an en-
tropy model based on mean-variance for a better selection of the assets in the
portfolio, to which Jana [18] added an objective function to generate a better
diversification of the assets; Gulko [15] introduced the Entropy Pricing The-
ory, an alternative method for constructing risk-neutral probability measures
without resorting to stochastic calculus; Nawrocki [24] defined a risk measure
based on “weighted” entropy; Dionisio [11] demonstrated the greater validity
of entropy on variance based on stock prices in the Portuguese market and
Kirchner [19] argued that this represents a more effective tool for capturing
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risk reduction through portfolio diversification. Ormos [25] on the other hand,
combined entropy with CAPM’s β to obtain a new risk measure and Sheraz
et al. [34] used it to assess the volatility of the market indices.
In this paper, we want to demonstrate that it is possible to assimilate the
system of cryptocurrencies to thermodynamic systems to be able to determine
their entropy in the sense of Boltzmann so that we can make price predictions
related to the possibility that they move in a more or less wide range; unlike
all the recent applications concerning theories based on Shannon entropy and
its derivations.
Innovation is linked to the reinterpretation of the monetary system of cryp-
tocurrencies. In this sense, we can apply physical theories to a social science.
It is interesting to develop this approach as we assume that the physical system
described by adapting the economy can be summarized by the movements that
cryptocurrencies perform the currency markets. Once the system has been de-
scribed, our goal is to verify that entropy calculated in the physical sense also
occurs in the economic context to allow us to make assumptions on how the
process could move in the next future. Furthermore, the dataset we have con-
sidered support this hypothesis, therefore it seems reasonable to use this form
of entropy to make assumptions about the future trend of prices. This type of
conjecture has been presented by Sergeev [32] who proposes an unconventional
representation of socio-economic balance, supplemented by Zakiras [40] which
uses Newton’s law of cooling. Finally, Khrennikov [20] analyzed the financial
markets from a thermodynamic point of view (defining this approach as fi-
nancial thermodynamics) and describing a financial Carnot cycle; Smith and
Foley [35] have shown that a kind of parallelism exists between utility theory
and thermodynamics and McCauley [22], based on this previous theory, main-
tains that the illiquidity of the markets does not allow for the application of
the concepts of statistical mechanics.
The paper structure is the following: in Section 2 we analyze cryptocurren-
cies and their key characteristics, focusing on the fact that they have a supply
limit; in Section 3 we describe the evolution of a system of a particle in statisti-
cal thermodynamics and how to determine its entropy, subsequently applying
these notions to our monetary system; in Section 4 we define the theoretical
assumptions we can link to the system created previously to study the price
evolution in these currency markets and we analytically describe the calcu-
lation of entropy using real data; finally in Section 5 some conclusions are
drawn.

2 Cryptocurrency

Cryptocurrencies represent a digital currency system with no guarantee in-
stitution and no transaction control. The main cryptocurrencies, by media
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coverage or by the possibility that some financial intermediaries offer to use
them as a payment instrument, are: Bitcoin, Ethereum, Ripple, Tether, Bit-
coin Cash and Litecoin.
Unlike traditional financial assets, their value is not based on tangible assets
such as the economy of a country or a company, but it is based on the security
of an algorithm that tracks transactions. Their definition is controversial since
by some entities [17] they are considered intangible assets (IFRS) while accord-
ing to the German financial supervisory authority (BaFin) they are officially
financial instruments [3]. Just as specified by Corbet et al. [10] the literature is
still immature and new empirical and theoretical evidence continues to emerge
monthly. Moreover, the same authors claim that in cryptocurrencies there are
unique and specific issues that cannot be addressed using quantitative research
and data mining as regulatory disorientation, cyber-criminality, and environ-
mental sustainability.
All the cryptocurrencies have been based on the Bitcoin, a currency created by
Nakamoto [23] who in 2009 released a software capable of implementing trans-
actions. The currency itself is a unique alphanumeric string that represents a
certain transaction, a transaction which will then be entered in a public regis-
ter called blockchain. The transfer of the currency takes place through a digital
signature mechanism by using the value of a function (called hash function)
which is inserted in the previous transaction and guarantees its authenticity.
The blockchain is the fulcrum of these systems and is essentially a register in
which the data of the owners of the currency are entered, transactions occur
in an encrypted manner. The blockchain is a data structure consisting of a list
of transaction blocks linked together so that each refers to the previous one
in the chain. Each block in the blockchain is identified by a hash generated
using the SHA256 cryptographic algorithm on the block header. A block is
a data structure that aggregates transactions to include them in the public
register. The block is made of a header, containing metadata, followed by
a long list of transactions. A complete block, with all transactions, is, thus,
1000 times larger than the block header [2]. The first identifier of a block is
the cryptographic hash generated by the SHA256 algorithm, which returns, as
a result, a 32-bit hash called block hash; the second identifier is the position in
the blockchain called block height.
The cryptocurrency generation process is called mining, which adds money to
the supply. Cryptocurrencies are “minted” during the creation of each block at
a fixed and decreasing rate [2]: each block generated on average every 10 min-
utes contains new currency. For example, if we consider Bitcoin, every 210000
blocks the currency issue rate decreases by 50% (the availability of new coins
grows as a geometric series every 4 years). It is estimated that around the
year 2140, the production of the last block will be reached (6930000) and the
number of coins produced will tend to its upper limit of 21 million (precisely
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20999999.97690000), value introduced by Nakamoto himself and contained in
the variable “MAX MONEY” as can be read in the source code present on
GitHub.1 This value represents a sanity check, especially used to avoid bugs
in which it is possible to generate currency from nothing. The integrity of the
blockchain network is guaranteed through consensus algorithms such as Proof-
of-Work (PoW) and Proof-of-Stake (PoS), that solve the Byzantine Generals
Problem [7] (problem of consent in the presence of errors). A consensus algo-
rithm is a mechanism used by the network to reach consensus, i.e. ensuring
that the protocol rules are followed and that transactions occur correctly so
that coins can only be spent once. The PoW (used in the Bitcoin system)
starting from a node allows you to select the next one to be connected in the
blockchain (through the hash link) based on a very complex computational
algorithm that consumes resources especially in terms of energy of the ma-
chines to which it relies on the network; on the other hand, in PoS (used in
the Ethereum system) the nodes are organized in the form of a stack in which
they are linked to each other starting from the leader based on an election that
involves various factors such as the age or status of a node. PoW is one of
the most resistant (even if more expensive) algorithms, which linking a large
number of blocks together make the hacking process too expensive.

3 Theoretical framework

The main assumption in this paper is that the prices of cryptocurrencies be-
have like a thermodynamic system, so it is possible to determine entropy by
using the Boltzmann formula. In order to present the theoretical framework
and the methodology, we need to briefly introduce the main physical results.
In Statistical Mechanics a macroscopic system is made up of N molecules
(N ∼ 1024 is the Avogadro’s constant) whose mechanics provide the evolu-
tion of 6N dynamic variables describing completely the microscopic states of
this system. Motion in the phase space can be studied using the 3N position
components and the 3N momenta components, indicated with {qi} and {pi}
whose evolution is driven by Hamilton’s equations. We can use a compact
notation to indicate a complete microscopic system of N particles:

X ≡ (q1, ...,qN ,p1, ...,pN) (1)

where X is a vector of 6N real components. Mechanics, therefore, provides
a very detailed description of the system contrary to thermodynamics which
studies the collective variations; for this reason, the mechanical point of view
can be defined microscopic and the thermodynamic one macroscopic. The
study of the system from a microscopic point of view concerns experimental

1Source: https://github.com/bitcoin/bitcoin/blob/master/src/amount.h
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observation on one or a few molecules.
Everything that happens from the microscopic side can be expressed in macro-
scopic terms through thermodynamics, defined in this case as a large amount of
microscopic variables. We consider an isolated system of N particles described
by the 3N coordinates and the 3N momenta in a 6N -dimensional space at
a certain time t. Particles are subject to the laws of classical mechanics and
therefore X(t) evolves according to Hamilton’s equations. Since the Hamilto-
nian H(p, q) does not depend on time, the energy E is a conserved quantity
during motion and develops on a fixed hypersurface. We want, for example, to
measure an observable A(X) (a function defined in the phase space) of the sys-
tem in thermodynamic equilibrium, but since the scale of macroscopic times is
much larger than the microscopic one, we can consider a datum as the result of
a system that has gone through a large series of microscopic states; this implies
that the observable must be compared with an average performed along with
the evolution of the system calculated over very long times Ā. The calcula-
tion of Ā would require knowledge of both the microscopic state at a certain
moment and the determination of the corresponding trajectory in the phase
space, which corresponds to a practically inexhaustible request. To determine
the observable, the ergodic theory intervenes, according to which each energy
surface is completely accessible to any motion with the given energy and the
average residence time in a certain region is proportional to its volume. If
these conditions are satisfied, the average Ā can be calculated as the average
of A(X) in which the states with the fixed energy contribute with equal weight.
In applications it is convenient to consider on average all states with energy
within a fixed range [E,E + ∆E]; furthermore, we are only interested in some
macroscopic properties such as particle number N and the volume V . There
is an infinite number of systems that satisfy these conditions: these form the
Gibb’s ensemble which is represented by a set of points in the phase space
characterized by a density function ρ(p, q, t) defined so that ρ(p, q, t) d3Np d3Nq
corresponds to the number of representative points of the system during the
instant t contained in the infinitesimal volume of the phase space d3Np d3Nq.
Furthermore, since energy, volume and number of particles are constants of
motion, the total number of systems in an ensemble is conservative.
We can thus introduce the postulate of equal a priori probability [12, 16] who
claims that when a macroscopic system is in thermodynamic equilibrium its
state can be with equal probability each of those which satisfies the macro-
scopic conditions of the system. This postulate implies that the system under
consideration belongs to an ensemble called microcanonic with density func-
tion

ρ(p, q) =

{
ρ∗ if E < H(p, q) < E + ∆

0 otherwise
(2)
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where ρ∗ is constant and all members of the ensemble have the same number
of particles and equal volume.
We can define Γ(E) the volume occupied by the microcanonical ensemble in
the phase space as:

Γ(E) ≡
∫
E<H(p,q)<E+∆E

d3Np d3Nq (3)

and Σ(E) the volume bounded by the energy surface E:

Σ(E) ≡
∫
H(p,q)<E

d3Np d3Nq (4)

so that
Γ(E) = Σ(E + ∆E)− Σ(E). (5)

Entropy, then, can be defined as:

SΓ =

∫
E≤H≤E+∆E

d3Np d3Nq ρ(−κB ln ρ)

=

∫
E≤H≤E+∆E

d3Np d3Nq
1

Γ

(
−κB ln

1

Γ

)
=

1

Γ
κB ln Γ

∫
E≤H≤E+∆E

d3Np d3Nq

=
1

Γ
κB ln Γ · Γ = κB ln Γ(E)

(6)

where κB ∼ 1.3806 ∗ 10−23 is the Boltzmann constant. To analytically cal-
culate Γ(E), which represents the number of states accessible to the system
at temperature T , we must consider that a microcanonical ensemble is made
up of J identical copies of the closed system, each of which is located in a
microstate (pi,qi) of the phase space. Being all on the same hypersurface E,
we can divide it into cells of equal size, where in each there are ji systems such
that J =

∑
i ji. To define the system it is necessary to find the most probable

distribution of the ji microstates, that is, to count the total number of ways in
which we can obtain a certain macrostate. In the Boltzmann paradigm with
an ideal gas consisting of identical particles under the same conditions, we can
say that

Γ(E) =
J !∏
i ji!

(7)

The idea that entropy is connected to volumes in the phase space finds its origin
in the Helmholtz Theorem, whose goal is to exactly bring thermodynamics
down from mechanics. Considering a one-dimensional mechanical system with
Hamiltonian:

H(p, q, Ṽ ) =
p2

2m
+ φ(q, Ṽ ) (8)
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the Helmholtz theorem defines

S̃(E, Ṽ ) = κB ln

∮
p(q) dq (9)

S̃(E, Ṽ ) is proportional to the logarithm of the phase space area enclosed by
the energy orbit E and parameter Ṽ ; it can, therefore, be written in the form

S̃(E, Ṽ ) = κB ln

∫
H(p,q,Ṽ )<E

dp dq (10)

To generalize the result to systems with N particles Boltzmann makes the
ergodic hypothesis. Assuming this hypothesis it is possible to show the gener-
alized Helmholtz theorem:

S̃(E, Ṽ ) = κb ln

∫
H(p,q,Ṽ )<E

dp dq (11)

Let us now try to translate this physical theory into a financial dress.

4 The model

A first attempt to create a link between economics and thermodynamics was
that of Saslow [31], who based the relationship on the utility function U (as-
sumed in complete analogy with thermodynamics) and verified how different
types of relationships at the base of the economy were in accordance with the
assumptions of thermodynamics (e.g. the number of transactions is conserva-
tive, as in the case of the total energy of a system). On this basis, Viaggiu et al.
[39] have developed a representation of an economic model relating to money
from a thermodynamic point of view. In their description the ensemble is made
up of the N interacting economic subjects, entirely described by two variables
{xi, yi} which represent money and credit/debt capacity and which are not
conjugated in the sense of mechanics Hamiltonian. The key characteristic is to
consider a representative function of the total currency as a conservative law,
to be able to exploit the ergodic hypothesis.
Our idea is to go back to their hypothesis by applying it to the case of cryp-
tocurrencies and the goal is to create an agent-based model, in which the
particles are replaced by N economic subjects (agents) who intend to trade
in cryptocurrencies (compared only to a reference currency, such as the USD)
where basically it is possible to determine the movement of economic subjects
in a certain “phase space” and whose entropy provides a proxy for this move-
ment. We can also fully describe an economic agent in our phase space by 2
variables, which we can, however, identify as {xi, yi}, where xi and yi indicate,
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respectively, the ability to buy and to sell a certain quantity of cryptocur-
rencies (both expressed in monetary terms). In this phase space (following
Saslow’s theory [31]) the value that satisfies the utility function is the num-
ber of Bitcoins purchased (by definition the number of these cryptocurrencies
in circulation is fixed and are purchasable only portions of this number). To
better explain how we defined the 2 key variables, we can give an example.
Suppose an economic agent wants to buy a certain number of Bitcoins, e.g.
500 and has di 1000000 USD in his bank account. To buy them in the first
place he will need to find someone willing to sell such a quantity of Bitcoin (by
definition the market for these cryptocurrencies needs direct exchange between
those who already own a certain quantity and those who want to buy) and he
will find a certain price that e.g. will allow him to buy only 300 of the 500
Bitcoin he needs (in this sense the economic agent is subject to the price).
His ability to buy is therefore understood as the ability to buy a number of
cryptocurrencies to reach a certain utility (which in this case has not been com-
pletely satisfied). This also happens because, according to the physical theory
of Boltzmann’s model, the economic agent (particle in the physical case) must
“collide” with another agent (particle) that is in its own microstate. The lat-
ter hypothesis is possible according to the fact that the market to which we
refer is influenced only by the supply and demand leverage, and that generally
those who operate in these markets negotiate almost exclusively in relation to
the number (portion) of cryptocurrencies and not for the price. As for [39],
even if the complete Hamiltonian formalism is not respected, we can consider
as a conserved quantity the total number of cryptocurrencies in circulation
which by their definition is constant over a suitable time interval through the
function M(xi, yi) (as in the particular case of Bitcoins for which the supply
limit is fixed at 21 million). However, since the supply limit has not yet been
reached by any cryptocurrency we consider this quantity constant concerning
the currency in circulation in a precise time t, therefore:

M =
N∑
i=1

xi + yi. (12)

In this sense, the sum of the ability to sell and buy of the N agents fully
describes the cryptocurrencies in circulation. The ergodic hypothesis allows
us, given a certain function f(xi, yi), to express its average with respect to the
time in terms of an average over the ensemble at fixed M :

f̄ =

∫
M=const

f(x, y)ρ(x, y) dx dy (13)

where ρ(x, y) denotes the probability distribution of the ensemble. Through
these assumptions we can verify the economic transformations through ther-
modynamics; in particular, as in statistical mechanics, we can calculate the
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volume in the phase space [39]. If we integrate over all the available volume
of the configuration space spanned by {x, y} with M̄ = m (where M̄ denotes
the average over the whole configuration space) we have

∫
M̄=m

dNx dNy = 0.
So introducing a thick shell ∆ where ∆� m we can define:

Γ(m) =

∫
m<M<m+∆M

dNx dNy

k2N
(14)

where dNx dNy is understood as the phase space and k is a normalization
factor such that Γ is dimensionless. This functional represents the number
of microscopic realizations of the system under examination and allows us to
calculate the entropy S as described in the equation (6).
We are therefore interested in verifying how economic subjects move in the
phase space we have created (in relation to their propensity to buy or sell)
and in order to exploit entropy as a proxy we can use price dynamics as an
indicator (obtainable from the currency markets, FOREX).
First, we know that cryptocurrencies are used by an approximate number of
economic entities equal to 44 million (Szmigiera [36] estimates that the number
of blockchain-based portfolios is 44 million so we can assume that there is an
at least equal share of subjects who intend to trade between all the different
types of existing cryptocurrencies) for which N � 1. We also know that every
subject in our system is fully described by its ability to buy and sell ({xi, yi}).
Let us consider that these two variables are summarized in the last prices
of the cryptocurrency on the currency markets, a type of price used to keep
track of changes in the value of an asset throughout a session. In this sense, the
latest prices allow us to understand whether, compared to the previous session,
the ability to buy or sell prevailed. We can summarize this price capability in
the sentence “prices describe the strength with which agents position themselves
in the phase space”. We have not identified a function such that a change of
xi and yi leads to a change in price, however the economic subjects move in
relation to the quantity purchased/sold. The price in this case is a summary
value of the movement of the set of economic entities: suppose e.g. that on
day 1 price is 1000 USD of a portion of Bitcoin. On day 2 we observe that the
price has risen to 1100 USD and we can assume that this increase is due to a
greater quantity of subjects who want to buy cryptocurrencies (in terms of the
variables xi and yi, we can say that the capacity to buy subjects has increased,
increasing xi). On the 3 day, however, we note that the price of Bitcoins is
900 and what we can assume is that the reduction is due to a greater number
of subjects who want to sell (increasing yi). The key feature is that we do
not make inferences about price dynamics, but about the movement of agents
in the phase space through price (as an indicator). Moreover, we can use
the function M (described above) because in a certain time t the quantity of
cryptocurrencies is constant and quantifiable, in this way we can go back to the
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previous economic model and determine Γ as described in the equation (14).
Analytically, we do not consider the number of economic subjects present in
the market but indirectly deduce their “position” in the phase space from the
difference between the closing prices. The process that led to the definition of
the results is the following:

• We take a certain reference interval (5 days) and cluster the closing price
series based on this interval;

• For each cluster there is a maximum and a minimum price, we calculate
the difference in terms of necessary steps to pass from one to the other
obtaining a certain value of gap G (this assumption is based on the idea
that the distance between maximum and minimum is a measure of the
dispersion of agents in our phase space);

• We use combinatorial analysis considering the value used for clustering
to determine the “volume” occupied by the disposition of the agents,
therefore:

Γ = G5 (15)

This equation derives from equation (7) in Boltzmann’s formulation to
determine the number of microstates; however, since we only consider
the arrangement of the economic subjects in the phase space and we do
not have the problem of the indistinguishability of the particles (as in
the physical case), our number of microstates is defined simply as the
combination of the different time steps considered between the price min
and max of the cluster.

Once the value of Γ is determined, entropy can be calculated by using the
Boltzmann formula:

S = κB ln Γ. (16)

As for [31], the use of the Boltzmann constant is not a necessary condition
since in a certain region we will never have a number of economic subjects
comparable to an Avogadro number of molecules, however its use we believe
may be an element help in improving the entropy determined in our way.
Finally, we can “rationalize” this entropy value obtained by multiplying it by
1023 to make the value more readable also from a graphic point of view (e. g.
to get 46.6 instead of 0.0496).
The entropy determined in this way is an additive type measure which at the
base provides for the presence of a logarithm, as it transforms a multiplicative
type phenomenon into an additive one. In literature there are functions that
seem similar, but have completely different purposes: our entropy is not a
measure of price volatility and in this sense the argument of the logarithm
is completely different from those generally used in economic sectors; in this
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case with a logarithmic function we use an additive function starting from a
multiplicative concept (like microstates) since we have the same requirement as
Boltzmann in considering microstates. On the basis of the numerical analysis
carried out we can say that, since entropy is always growing in accordance
with the second principle of thermodynamics, if in one part of the system we
observe a reduction necessarily in another part entropy must grow (a classic
example concerns tidying up a room: in this case, the entropy of the room is
reduced but I have increased the overall one because I used energy to tidy up,
increasing the entropy of those who are tidying up). In agent-bases logic the
number of transactions could be used (instead of the price), but probably it
would not add any additional information to our model.

4.1 Dataset

The empirical analysis has been applied to the closing prices of the main six
cryptocurrencies2, all related to the US dollar (USD), that are:

• Bitcoin, whose price with 1 decimal digit provides for a tick size equal
to 0.1;

• Ethereum, whose price with 2 decimal places provides for a tick size equal
to 0.01;

• Ripple, whose price with 5 decimal places provides a tick size equal to
0.00001;

• Tether, whose price with 4 decimal places requires a tick size equal to
0.0001;

• Bitcoin Cash, whose price with 2 decimal places requires a tick size equal
to 0.01;

• Litecoin, whose price with 3 decimal places requires a tick size equal to
0.001.

Prices are considered with a daily time frame over 1 year, from 1/1/2019
to 31/12/2019 and they are clustered in 5 days. To make the figures more
clear, the 1-year interval has been divided into 4 quarters. Furthermore, to
better test the idea, the same test was carried out also on daily prices at 1
minute of 1/4/2020 recorded from 10:56 to 11:52, instead of clustered in 5
minutes. The difference from the daily case is that these prices were collected,
always from the same source, but observed on different currency markets;
in particular Bitcoin on the GDAX exchange, Ethereum on Bibox exchange,

2Source: Investing.com
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Ripple on Binance exchange, Tether on Kraken exchange, Bitcoin Cash on
Huobi exchange and Litecon on ZB.COM exchange.

4.2 Numerical results

We can start the analysis from the annual case. The first cryptocurrency
analyzed is Bitcoin (BTC/USD). We distinguish the trend of entropy compared
to prices in the 4 ranges previously defined:

(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 1: Prices (blue) and entropy (orange) Bitcoin in the period 1/1 - 31/12

As can be seen graphically, when entropy reaches a point of relative mini-
mum falling below a certain threshold (it therefore undergoes a sharp reduc-
tion) it is forced in the next cluster to grow, almost as if to rebalance itself.
This hypothesis does not seem to occur in the case of entropy lowering only a
few points, as seen in the figure 1(c) in the case of clusters 3, 4 and 5. This
implies that in the cluster in which the entropy descent occurred there was a
very small gap and at a decrease in entropy in prices necessarily another part
of the system is simultaneously experiencing an increase in entropy, which will
cause a short-term effect. The last result, translated into our model created
previously, indicates that in clusters in which entropy drops drastically, eco-
nomic subjects concentrate in a relatively small “volume”.
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The second cryptocurrency analyzed are Ethereum (ETH/USD) as in the pre-
vious case:

(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 2: Prices (blue) and entropy (orange) Ethereum in the period 1/1 -
31/12

Again, especially as seen in the figure 2(c) when entropy decreased sharply
after a period of standing (small ups and downs) in the following period it was
“forced” to grow (e. g. as happens in the case of excitation of the particles
contained in a gas). A particular situation, however, occurs in the figure 2(a)
and in particular in clusters 2, 3 and 4: in this case entropy continued to
fall despite having suffered a sudden movement. This situation allows us to
highlight 2 things: that the sharp drop comes from a situation where the
gap between the max and min prices is lower than a certain threshold value
and that probably the descent of entropy should not be considered only in the
passage from one cluster to another, but in the passage from groups of clusters;
in fact, if we consider clusters 2 to 5 as a single group, it is easy to see how
entropy has undergone a really sharp reduction followed by growth.
The third cryptocurrency is represented by Ripple (XRP/USD):
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(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 3: Prices (blue) and entropy (orange) Ripple in the period 1/1 - 31/12

The situation is not very different from the Ethereum, but the marked
variations are related to the fact that this cryptocurrency moves in a price
range [0, 1] for which every movement is important. As seen in the figure 3(d)
in clusters 4, 5 and 6 the entropy has returned to its original level following a
sharp fall. We expected a growth but the fact that it has grown so much is
related to the range in which prices move (as if it were a smaller volume than
in previous cases).
The fourth cryptocurrency analyzed is the Tether (USDT/USD), whose price
moves in a neighborhood of 1 and consists of 4 decimal places:
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(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 4: Prices (blue) and entropy (orange) Tether in the period 1/1 - 31/12

As in the previous case, the range of variation of prices is very “narrow”
and every movement is important. In this case, however, it is possible to notice
for example looking at the figure 4(d) what is the gap value and therefore the
entropy threshold that, if “under”-passed, will cause an immediate growth in
the next future.
The fifth currency analyzed is Bitcoin Cash (BCH / USD):
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(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 5: Prices (blue) and entropy (orange) Bitcoin Cash in the period 1/1 -
31/12

In this case the figure 5(d) shows how the gap threshold below which a sharp
drop in entropy occurs can also be quite high (especially in currencies where
high volatility allows it to to move many points from one price to another).
This situation, in analogy with physics, occurs for example in the case of gases
that need a much stronger heat source than other types.
The last cryptocurrency we have considered is Litecoin (LTC/USD):



314 Luca Grilli and Domenico Santoro

(a) Closing prices and entropy 1/1 -
31/3

(b) Closing prices and entropy 1/4 -
29/6

(c) Closing prices and entropy 30/6
- 27/9

(d) Closing prices and entropy 28/9
- 31/12

Figure 6: Prices (blue) and entropy (orange) Litecoin in the period 1/1 - 31/12

Also in this cryptocurrency all the situations defined above occur, in par-
ticular from the figure 6(d) it can be seen how, following the fact that the first
4 clusters are growing despite the gap value being quite low, the gap threshold
to define the drastic descent of entropy is quite low.
As for the case of 1-minute prices, we can summarize the trend of the different
cryptocurrencies together as shown in figure 7 which shows how all the as-
sumptions made in the previous case are also respected for prices of this type.
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(a) Bitcoin (b) Ethereum

(c) Ripple (d) Tether

(e) Bitcoin Cash (f) Litecoin

Figure 7: Prices (blue) and entropy (orange) of cryptocurrencies based on 1
minute

All these evidences confirm the relationship between the phase space cre-
ated previously and statistical mechanics. On this basis we can expect behavior
of economic subjects very similar to particles, therefore in situations in which
entropy is drastically reduced we expect subsequent growth situations since
entropy is continuously increasing, with the consequence that economic agents
from a situation of concentration (which occurs when entropy is reduced) they
begin to disperse again in the phase space (as in the case of gases) and this
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movement is summarized by the price. For example, suppose we are in a clus-
ter C where entropy has declined sharply. As previously defined, we expect
entropy to grow in the next cluster and this leads to an increase in the price
gap. The hypothesis we can make is that the value of the gap in the cluster
C+1 is at least one unit higher than the value in the cluster C. Let’s consider a
series of clusters in which we know the trend of prices and entropy (in this case
we have considered an extract of the last Bitcoin price in the period 1/1/2019
- 31/3/2019). We know that in cluster 5, entropy has greatly reduced so we
expect it to grow in cluster 6, creating a greater gap between prices than the
previous one. At this point, knowing the value of the gap in the cluster C,
we can create a bifurcation that represents the possible evolution of the move-
ment of agents based on price dynamics in the event of a bullish or bearish
trend. Suppose a gap value 4 times larger than the previous one (as happens
in reality) and a first cryptocurrency price close enough to the last price of the
previous cluster; what we can expect is such a situation:

• If the second closing price of the cluster C+1 is higher than the previous
price in the same cluster and assuming an upward trend we can assume
that the series of prices continues in an area that we have defined as
Gap−;

• If the second closing price of the cluster C+1 is lower than the previous
price in the same cluster and assuming a bearish trend we can assume
that the price series continues in an area that we have defined as Gap+.

In any case deriving from the bifurcation, the gap (therefore the number of
microstates) influences the possible dispersion of the economic agents in the
phase space.
At this point, to make the idea better, we can represent the two key variables of
the model through a scatterplot in which the points represent a simplification
of the number of economic subjects and their position. Furthermore, we can
compare how agents move in relation to the entropy variations highlighted by
the respective gaps and therefore by the price (in particular prices and entropy
represent a section of the first quarter of Bitcoins).
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(a) Stationary price and
entropy

(b) Descending entropy (c) Growing entropy

(d) Economic agents po-
sition in stationary case

(e) Economic agents posi-
tion in decreasing case

(f) Economic agents posi-
tion in increasing case

Figure 8: Comparison between the position of economic agents and relative
entropy

5 Conclusions

In this paper, we have shown how it is possible to apply Boltzmann’s entropy
to cryptocurrencies. We have defined a similarity between a thermodynamic
system and a currency system based on cryptocurrencies characterized by the
presence of N subjects interested in buying (or selling) this type of currency.
Assuming that the quantity of money at a certain moment t is fixed and deter-
minable, it is possible to hypothesize that the position of each economic entity
is summarized by the last price of the cryptocurrency itself in the currency
markets, as an indicator characterized by the ability to buy and sell. With
this hypothesis, it was possible to determine the entropy using the Boltzmann
formula, in particular, its calculation was made by dividing the time interval
into clusters and calculating the gap between the different prices. This analysis
has shown that when entropy falls sharply the economic subjects tend to ap-
proach each other in the phase space identified by us and, in accordance with
the second principle of thermodynamics, they must necessarily move away,
which leads entropy to necessarily grow. The next step is to try to model the
stock price in this way so that we can apply the same type of entropy and look
for a similar result.
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