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Abstract

This paper considers a system of ordinary differential equations with
discontinuous right-hand side. Such systems appear in economics in
the context of economic growth. The paper first shows, at the case of
a planar system, the derivation of a nonsmooth periodic orbit. It is
then shown, by defining a Poincaré map, that this solution is globally
stable. The limitations of this global stability theory are investigated
and suggestions towards a local theory of stability are introduced.
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1 Introduction

Filippov introduces a solution concept for differential equations with discon-
tinuous right-hand side [2]. Such equations frequently appear in economic
modelling [6], [3], [1], [4], [5]. Despite the importance of these models regard-
ing economic policy analysis and implications, economic analysis, however,
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rarely goes beyond existence and uniqueness results. In this paper, we con-
sider an example of a planar dynamical system defined by a set of autonomous
ordinary differential equations with discontinuous right-hand side, and show
how to calculate its solution. The solution is then used to establish global
stability of a nonsmooth periodic orbit via Poincaré map. A property of the
stability theory discussed here is that it requires calculating the explicit solu-
tion of the nonsmooth dynamical system, and then, by application of Poincaré
theory to show that it is globally stable. Poincaré theory heavily relies on the
information provided by the periodic orbit. Such information might not be
available in many complex economic applications. We are hence interested in
a theory that would not require such explicit information about the solution
of the system.

In this paper we compare Poincaré’s global stability theory to a local sta-
bility theory introduced in Stiefenhofer and Giesl [8], which does not require
the calculation of a solution of the system at hand. At the case of an example
we compare the two theories. In this paper, we discuss Poincaré’s stability and
derive the nonsmooth periodic orbit. We revisit this example in a companion
paper of this journal and show that exponentially asymptotically stability can
be shown without the explicit solution of a system.

The next section considers an example and derives the nonsmooth periodic
orbit of a system with discontinuous right-hand side. Section three defines a
Poincaré map and shows stability of the nonsmooth orbit. Section four is a
conclusion.

2 The model and its solution

We consider an explicit calculation of a periodic orbit of a non-smooth dynam-
ical system (1) defined by equations (2) and (3). The calculation of a periodic
orbit is performed by transforming the original problem into a problem in po-
lar coordinates. The explicit solution is then found by separation of variables.
We show stability of this orbit by application of a Poincaré map.

We consider a differential equation

ẋ = f(x),

where f is a discontinuous function at x2 = 0 and x ∈ R2 such that for f := f±

we have

ẋ = f±(x) =

{
f+(x) if x2 > 0
f−(x) if x2 < 0.

(1)

Let equation (1) be defined by
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f+
1 (x) = x1 ((R+)2 − ((x1)

2 + (x2)
2))− x2

f+
2 (x) = x2 ((R+)2 − ((x1)

2 + (x2)
2)) + x1

}
if x2 > 0. (2)

and
f−1 (x) = x1 ((R−)2 − ((x1)

2 + (x2)
2))− x2

f−2 (x) = x2 ((R−)2 − ((x1)
2 + (x2)

2)) + x1

}
if x2 < 0, (3)

where R± > 0 are some constants [7].

The aim here is to calculate a solution of equations (2) and (3) via con-
ventional theory. We also show that the periodic orbit is globally stable. This
requires to define a Poincaré map. We want to find a solution of this model.
Hence we transform the model in polar coordinates. We use the formulas

ṙ± =
1

r±
(x±1 ẋ

±
1 + x±2 ẋ

±
2 ) (4)

θ̇± =
x±1 ẋ

±
2 + x2ẋ

±
1

(r±)2
. (5)

Using equations (4) and (5) we obtain

ṙ± = r±
(
(R±)2 − (r±)2

)
(6)

θ̇± = 1. (7)

The differential equation of the phase path is given by

dr±

dt
dθ±

dt

=
dr±

dθ±
=
r± ((R±)2 − (r±)2)

1
.

This differential equation can be solved by the method of separating variables.
Thus separating variables and integrating both sides yields∫

dr±

r± ((R±)2 − (r±)2)
=

∫
dθ±

1
. (8)

In order to find a solution of the l.h.s of equation (8) we apply partial sums.
Hence, we have∫

1

r±(R± − r±)(R± + r±)
dr± =

∫
A

r±
dr±+

∫
B

(R± − r±)
dr±+

∫
C

(R± + r±)
dr±.

(9)
We solve

1 = A±(R± − r±)(R± + r±) +B±r±(R± + r±) + C±r±(R± − r±). (10)
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in order to obtain values for the constants A,B, and C. Hence equation (10)
with r± = 0 yields A± = 1

(R±)2
. Equation (10) with r± = R± yields B± =

1
2(R±)2

, and with r± = −R± yields C± = − 1
2(R±)2

. Substituting these constants

back into equation (9) yields

=

∫ 1
(R±)2

r±
dr± +

∫ 1
2(R±)2

(R± − r±)
dr± +

∫ − 1
2(R±)2

(R± + r±)
dr±

=

∫
1

(R±)2r±
dr± +

∫
1

2(R±)2(R± − r±)
dr± −

∫
1

2(R±)2(R± + r±)
dr±

=
1

(R±)2

∫
1

r±
dr± +

1

2(R±)2

∫
1

(R± − r±)
dr± − 1

2(R±)2

∫
1

(R± + r±)
dr±.

Now solving equation (8) yields

1

(R±)2
ln r± − 1

2(R±)2
ln(R± − r±)− 1

2(R±)2
ln(R± + r±) = θ± + c±1

1

2(R±)2
ln r± +

1

2(R±)2
ln r± − 1

2(R±)2
ln(R± − r±)− 1

2(R±)2
ln(R± + r±) = θ± + c±1

1

2(R±)2
ln

(
(r±)2

(R± − r±)(R± + r±)

)
= θ± + c±1 .(

(r±)2

(R± − r±)(R± + r±)

)
= e2(R

±)2(θ±+c±1 ).

Hence we have(
(r±)2

(R± − r±)(R± + r±)

)
= e2(R

±)2(θ±+c±1 ) (11)

with D± = ec
±

, r±0 = r±0 (θ±0 ), and θ±0 we obtain

D± =
(r±0 )2

((R±)2 − (r±0 )2)
e−2θ

±
0 (R±)2 . (12)

Substituting equation (12) into equation (11) yields

(
(r±)2

(R± − r±)(R± + r±)

)
= e2θ

±R±)2D±(
(r±)2

((R±)2 − (r±)2)

)
=

(r±0 )2

((R±)2 − (r±0 )2)
e−2(θ

±
0 −θ±)(R±)2

which after some algebra yields

(r±)2 =

(
(r±0 )2

((R±)2−(r±)2)
e−2θ

±
0 (R±)2(R±)2

)
e2θ

±(R±)2

1 +
(

(r±0 )2

((R±)2−(r±)2)
e−2θ

±
0 (R±)2

)
e2θ±(R±)2
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and simplifies to

(r±)2 =
(R±)2

e−2(θ
±−θ±0 )(R±)2

(
(R±)2−(r±0 )2

(r±0 )2

)
+ 1

. (13)

Now we consider the positive orbit. Hence let θ+0 = 0, and θ+1 = π, then

(r+1 )2 =
(R+)2

e−2π(R+)2
(

(R+)2−(r+0 )2

(r+0 )2

)
+ 1

. (14)

Let’s consider the negative orbit. Hence let θ−1 = π, and θ−2 = 2π, then

(r−2 )2 =
(R−)2

e−2π(R−)2
(

(R−)2−(r−1 )2

(r−1 )2

)
+ 1

. (15)

We now define the Poincaré map

P 2 : (r+0 )2 → (r+1 )2 = (r−1 )2 → (r−2 )2

using equations (14) and (15) equation by

P 2(r+0 ) =
(R−)2

e−2π(R−)2


(R−)2− (R+)2

e−2π(R+)2

 (R+)2−(r+0 )2

(r+0 )2

+1

(R+)2

e−2π(R+)2

 (R+)2−(r+0 )2

(r+0 )2

+1

+ 1

. (16)

We want to find a fixed point

P 2(r+0 ) = (r+0 )2

and show that
|P ′(ρi0)| < 1.

with ρi := (ri)
2 and i = 0, 1. Now, we calculate

P̄ 2(r+0 ) = (r+0 )2 (17)

using equation (14). We have by equation (14)

(r+1 )2 =
(R+)2

e−2π(R+)2
(

(R+)2−(r+0 )2

(r+0 )2

)
+ 1

=
A2

B2−(r+0 )2

(r+0 )2
+ A2

B2
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with

A2 = e2π(R
+)2(R+)2

B2 = (R+)2.

Then using (17) we obtain

A2(r+0 )2

B2 − (r+0 )2 + A2

B2 (r+0 )2
= (r+0 )2

A2(r+0 )2 = (r+0 )2
[
B2 − (r+0 )2 +

A2

B2
(r+0 )2

]
,

hence
r+0 = 0

is a solution. Other solutions are given by

A2 =

[
B2 − (r+0 )2 +

A2

B2
(r+0 )2

]
A2 −B2 = (r+0 )2

[
A2

B2
− 1

]
(r+0 )2 =

A2 −B2

A2

B2 − B2

B2

=
A2 −B2

A2 −B2
B2

which by substitution of B2 = (R+)2 and simplification yields the solution

r+0 =
√

(R+)2 = R+.

Now, we calculate

P 2(r+0 ) = (r+0 )2 (18)

using equation (16). We have by equation (16)

(r−2 )2 =
(R−)2

e−2π(R−)2
(

(R−)2−(r−1 )2

(r−1 )2

)
+ 1

=
a2

b2−(r−1 )2

(r−1 )2
+ a2

b2
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with

a2 = e2π(R
−)2(R−)2

b2 = (R−)2.

Then using (18) we obtain

a2(r−1 )2

b2 − (r−1 )2 + a2

b2
(r−1 )2

= (r+0 )2

a2(r−1 )2 = (r+0 )2
[
b2 − (r−1 )2 +

a2

b2
(r−1 )2

]
a2

(r+0 )2

[
B2 − (r+0 )2

(r+0 )2
+
A2

B2

]
=

[
b2 + (

a2

b2
− 1)

] [
B2 − (r+0 )2

(r+0 )2
+
A2

B2

]
a2

(r+0 )2
=

b2(r+0 )2

A2(r+0 )2

B2−(r+0 )2+A2

B2 (r
+
0 )2

+
a2 − b2

b2

=
b2
[
B2 − (r+0 )2 + A2

B2 (r+0 )2
]

A2(r+0 )2
+
a2 − b2

b2

a2 − b2

b2
=

1

(r+0 )2

[
a2 −

b2B2 − b2(r+0 )2 + A2

B2 b
2(r+0 )2

A2

]
(
a2 − b2

b2

)
(r+0 )2 = (r+0 )2

(
b2 − A2

B2
b2
)

+ A2a2 − b2B2

A2a2 − b2B2 = (r+0 )2
(
A2

[
a2 − b2

b2

]
+ b2

[
A2 −B2

B2

])
(r+0 )2 =

A2a2 − b2B2(
A2
[
a2−b2
b2

]
+ b2

[
A2−B2

B2

])
which after substitution of A,B, a, b yields

(r+0 )2 =
e2π(R

+)2(R+)2e2π(R
−)2(R−)2 − (R−)2(R+)2(

e2π(R+)2(R+)2
[
e2π(R

−)2 (R−)2−(R−)2

(R−)2

]
+ (R−)2

[
e2π(R

+)2 (R+)2−(R+)2

(R+)2

])
=

(R+)2(R−)2
[
e2π((R

+)2(R−)2) − 1
]

(R+)2(R−)2
[
e2π((R

+)2(R−)2)

(R−)2
− e2π(R

−)2

(R−)2
+ e2π(R

+)2

(R+)2
− 1

(R+)2

]
=

(R+)2(R−)2
[
e2π((R

+)2(R−)2) − 1
]

(e2π(R+)2 − 1) (e2π(R−)2(R+)2 + (R−)2)



518 Pascal Stiefenhofer and Peter Giesl

Hence we have the solution

r+0 =

√
(R+)2(R−)2 [e2π((R+)2(R−)2) − 1]

(e2π(R+)2 − 1) (e2π(R−)2(R+)2 + (R−)2)
.

3 Global stability of the nonsmooth periodic

orbit

We now want to show stability of the periodic orbit. This requires to check
that the absolute value of the derivative of the Poincaré map is less than one
at the calculated fixed point.

Let the radius r go from initial value r0 to r1 and then to r2, and let ρi = r2i .
It is enough to show that Π(ρ0) = P 2(r20) satisfies |Π′(ρ0)| < 1 (so everything
for the squares): Indeed, we have

dr2
dr0

=
d
√
ρ2

dρ0

dρ0
dr0

=
1

2
ρ
−1/2
2

dρ2
dρ0

2r0

=
dρ2
dρ0

r0
r2
.

Note that at the fixed point (periodic orbit) we have r0 = r2, so that dr2
dr0

= dρ2
dρ0

.

Now let’s calculate dρ2
dρ0

. We have

ρ1 =
(R+)2e2π(R

+)2

(R+)2

ρ0
− 1 + e2π(R+)2

, (19)

ρ2 =
(R−)2e2π(R

−)2

(R−)2

ρ1
− 1 + e2π(R−)2

. (20)

In particular we have from the first equation

ρ1

(
(R+)2

ρ0
− 1 + e2π(R

+)2
)

= (R+)2e2π(R
+)2 . (21)
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Then

Π′(ρ0) =
dρ2
dρ1

dρ1
dρ0

=
(R−)2e2π(R

−)2(
(R−)2

ρ1
− 1 + e2π(R−)2

)2 (R−)2

ρ21

× (R+)2e2π(R
+)2(

(R+)2

ρ0
− 1 + e2π(R+)2

)2 (R+)2

ρ20

=
(R−)4e2π(R

−)2(R+)4e2π(R
+)2(

(R−)2

ρ1
− 1 + e2π(R−)2

)2
(R+)4e4π(R+)2ρ20

using (21)

=
(R−)4e2π(R

−)2e2π(R
+)2(

(R−)2

ρ1
− 1 + e2π(R−)2

)2
ρ20e

4π(R+)2
.

The fixed point (periodic orbit) condition is ρ2 = ρ0, i.e. see second equa-
tion (19)

ρ0 =
(R−)2e2π(R

−)2

(R−)2

ρ1
− 1 + e2π(R−)2(

(R−)2

ρ1
− 1 + e2π(R

−)2
)2

ρ20 = (R−)4e4π(R
−)2

This gives

Π′(ρ0) =
e2π(R

−)2e2π(R
+)2

e4π(R−)2e4π(R
+)2

= e−2π((R
−)2+(R+)2) < 1

By inspection of this inequality we conclude that the periodic orbit is stable.

4 Conclusion

In this paper we consider a system of ordinary differential equations with dis-
continuous right-hand side. At the case of an example, we explicitly calculate
the nonsmooth periodic orbit of such a dynamical system and show by ap-
plication of a Poincaré map that it is globally stable. The main drawback of
this theory, however, is that it requires the explicit calculation of the solu-
tion of the system at hand. This may be demanding and in some economic
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applications not even always possible. This problem may prevent economists
from deriving analytic solutions of more complex economic problems for the
purpose of economic policy analysis. A companion paper revisits the example
considered here, and shows that Stiefenhofer and Giesl [8] provide a local the-
ory of exponentially asymptotically stability of nonsmooth periodic orbits and
a formula for the basin of attraction, which does not require the calculation of
the solution of the dynamical system.
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