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Abstract 

 

 Conjugate gradient (CG) methods have played a significant role in solving large 

scale unconstrained optimization. This is due to its simplicity, low memory 

requirement, and global convergence properties. Various studies and 

modifications have been done recently to improve this method.  In this paper, we 

proposed a new conjugate gradient parameter )( k which possesses global 

convergence properties under the exact line search. Numerical result shows that 

our new formula performs better when compared to other classical conjugate 

gradient methods.  
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1. Introduction 
 

 Conjugate gradient method (CG) is designed to solve large scale unconstrained 

optimization problem. In general, the method has the following form. 

,),(min nRxxf   (1)       

 

where RRf n :  is a continuously differentiable function. The CG methods are 

iterative methods of the form,        

,...,2,1,0,1  kdxx kkkk               (2) 

 

where 0k  is the step length computed using exact line search by the formula 

  ),(min kkkkk dxfdxf    (3) 

 

and kd is the search direction computed as follow 
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where kg denotes the gradient of )(xf at kx . k is a coefficient that characterizes 

the conjugate gradient methods. Some well-known methods are given as follows, 
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where 1kg and kg are the gradients of )(xf at the point 1kx and kx  respectively. 

Also, . denotes Euclidean norm of vectors. The methods stated above are known  



Global convergence properties                                                                          1859 

 

 

as Fletcher-Reeves (FR) [18], Polak-Ribiere-Polyak (PRP) [5], Hestenes-Steifel 

(HS) [13], Liu-Storey (LS) [23], Dai-Yuan (DY) [21], and Conjugate Descent 

(CD) [17], respectively. It shows that if )(xf is a strongly convex quadratic 

function, then in theory, all these methods are equal with the use of exact line 

search. However, for non-quadratic functions, their behaviors differ [22, 24].  

 

     The global convergence properties of the conjugate gradient methods under 

different line searches have been studied by many researchers. Zoutendijk [7], 

proves that FR method converges globally under exact line search. Powell [12], 

however, shows that the performance of the FR method is poor by giving a 

counter example. Al-Baali [10], Touati-Ahmed and Storey [3], Gilbert and 

Nocedal [8], have further analyzed the global convergence of algorithm related to 

the FR method with the strong Wolfe condition. Powell [11], further showed that 

FR method is superior when compared with other CG methods. For recent 

findings and further studies of the CG methods, refer to Andrei [16], Rivaie et al. 

[14], Sun and Zhang [9], Wei et al. [25], Hager and Zhang [19], Abdelrhaman et 

al. [1]. 

 

      In this paper, we investigate the convergence and the efficiency of a new 

conjugate gradient method under the exact line search. In the next section, we 

propose a new formula for the coefficient k  and algorithm. In section 3, we 

show that this new method satisfies the sufficient descent properties and the 

global convergence proof under the exact line search. In section 4, we carried out 

some numerical comparisons of our new method with FR, PRP and AMRI 

methods and discuss the results. Finally, section 5 present the concluding part of 

the work.   

 

2. New Formula for the Cg Coefficient  
 

Recently, Abdelrhaman et al. [1] modified a work done by Rivaie et al. [14].  He 

proposed a new coefficient k  by modifying the numerator.  This coefficient is 

known as AMRI

k  and is expressed as  
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where ||.|| denotes to the two norm of vectors. 

Motivated by the idea of AMRI, we constructed a new k  known as SMAR

k   where 

SMAR denotes Sulaiman, Mustafa, Abdelrhaman, and Rivaie. The new method is 

given as follows, 
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The algorithm is given below: 

 

 

Algorithm 2.1 

Step1. Given an initial point nRx 0 , )1,0( , Set 00 gd  , 0k , if | || | 0g , then 

stop. 

Step2.  Compute SMAR

k  based on (12). 

Step3.  Compute kd based on (4). If |||| kg , then terminate, else go to step 4 

Step4. Compute step size based on (3).  

Step5.  Update new point base on (2). 

Step6. If )()( 1 kk xfxf and |||| kg , then terminate, 

            Otherwise, set 1 kk and go to Step 1. 

 

3. Convergence analysis  
 

In this section, the convergence properties of  SMAR

k  will be studied. First of all, 

we need to establish the sufficient descent condition properties. 

 

3.1. Sufficient descent condition 

 

 For sufficient descent condition to hold, then 

 
2|||| kk

T

k gCdg 
 
for 0k and 0C  (13) 

 

The following Theorem shows that our new formula with exact line search will 

possess the sufficient descent condition. 

 

Theorem 1 

Consider a CG method with the search direction (4) and SMAR

k  given as (12), then 

condition (13) holds for all 0k . 

 

Proof: 

If ,0k then it is clear that 2

000 |||| gCdgT  . Hence condition (13) holds true. 

We also need to show that for 1k , condition (13) will also hold true. 

From (4), we have  

k

SMAR

kkk dgd 111            
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By multiplying both sides of (4) by 1kg , we obtain 
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For exact line search, we know that .01  k

T

k dg Thus, 
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T

k gdg         

Therefore, it implies that 1kd  is a sufficient descent direction. Hence, 
2|||| kk

T

k gCdg   holds true. The proof is completed. ■ 

3.2. Global convergence properties 

       

In this section, we present some basic Assumptions which are often needed for 

global convergence analysis of CG methods. 

 

Assumption 1 

(1) f is bounded below on the level set nR  and is continuous and differentiable in 

a neighborhood  N of the set  )()(| 0xfxfRxN n   at the initial point 
0x . 

(2) The gradient )(xg  is Lipschitz continuous in N , namely, so there exist a 

constant 0L  such that .,||,||||)()(|| NyxyxLygxg   

From (12), we know that 
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Hence we obtained a simplification of SMAR as 
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Under Assumption 1, we have the following useful Lemma, which was proved by 

Zoutendijk [7]. 

  

Lemma 1. Suppose Assumption 1 hold true. Consider any CG method of the form 

[4], where kd is a descent search direction and k satisfies the one-dimensional 

search direction condition. Then, the Zoutendijk condition holds, which is given 

by 
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By applying Lemma 1, we obtain the convergent theorem of the CG method given 

below using (16). 

  

Theorem 2 
Suppose assumption 1 holds true. Consider any CG method of the form (2) and 

(4), where k  is obtained using exact line search. Then 
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Proof:  

We prove by contradiction. That is, if Theorem 2 is not true, then, there exist a 

constant 0c such that 

cg k              (18) 

We rewrite (4) as 

,1 kkkk dgd               

 

Squaring both side of the equation gives 
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Therefore, from (21) and (18), it shows that  
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This, however, contradicts the Zoutendijk condition in Lemma 1. Therefore, the 

proof is completed. ■ 

 

4. Numerical Results 
 

In this section, we present some numerical performance based on the comparisons 

of our proposed algorithm with FR, PRP and AMRI algorithms. The comparisons 

are based on the number of iterations and CPU time. We considered 610|||| kg

to be stopping criteria. For each of the test problems, four initial points are used. 

These four initial points will lead us to test the global convergence and the 

robustness of our method. All algorithms were implemented under exact line 

search to avoid complexity and to obtain the actual value of the step length. All 

codes of the test problems considered in Table 1 were written on MATLAB 7.6.0 

(R 2008a) subroutine programming. This was run on Intel® Core™ i5-2410M 

CPU @ 2.30 GHz processor, 4GB for RAM memory and Windows 7 Professional 

operating system. Most of the test functions considered are from Andrei [15]. The 

numerical results are shown in Table 1. The performance results are presented in 

Figure 1 and Figure 2 respectively, based on the performance profile introduced 

by Dolan and More [4]. In the performance profile, they introduced the notion of a 

process used to evaluate and compare the performance of the set of solvers S on a 

test P . Suppose there exist 
sn  solvers and pn  problems, for each problem p  and 

solver s , they define    

spt , = computing time needed to solve problem  by solver (the number of iteration 

 or CPU time). 

Requiring a baseline for comparisons, they compared the performance on problem 

p by solver s with the best performance by any solver on this problem using the 

performance ratio 

 Sst

t
r

sp

sp

sp



:min ,

,

,   

 

We suppose that parameter spm rr , for all sp, is chosen, and Msp rr , if and only 

if solver s does not solve problem .p  The performance of solvers s on any given 

problem might be of interest, but because we would prefer obtaining the overall 

assessment of the performance of the solver, then it was defined as  

   .:
1

, trPpsize
n

tp sp

p

s    

Thus  tps  was the probability for solver Ss that a performance ratio spr ,  was 

within a factor Rt of the best possible ration. Then, function sp  was the 

cumulative distribution function for the performance ratio. The performance 

profile ]1,0[: Rps  for a solver was a non-decreasing, piecewise, and  
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continuous from right. The value of  1sp is the probability that the solver will 

win over the rest of the solvers. In general, a solver with high value of  p  or at 

the top right of the figure are preferable or represent the best solver 

 

 

Table 1:  List of problem functions 

 
No Function Dimension Initial Points 

1 Six hump 2 (8, 8), (-8, -8), (10, 10), (-10, -10) 

2 Three hump 2 (5, 5), (7, 7), (11, 11), (15, 15) 

3 Booth 2 (10, 10), (25, 25), (50, 50), (100, 100) 

4 Treccani 2 (5, 5), (7, 7), (50, 50), (100, 100) 

5 Leon 2 (-0.5, 1), (5, -5), (5, 15), (5, -15) 

6 Matyas 2 (2, 2), (5, 5), (10, 10), (20, 20) 

7 Dixon and Price 2, 4 (5, 5), (13, 13), (30, 30), (33, 33) 

8 Fletcher 2, 4, 10 (5, 5,…, 5), (7,  7, …, 7), 

(10, 10, …,10), (15, 15, …,15) 

9 Extended Maratos 2, 4, 10 (15, 15,…,15), (20, 20,…20), 

(50, 50,…,50), (100, 100,…,100) 

10 Extended Penalty 2, 4, 10, 100 (100,100,…,100),(105,105,…,105), 

(135,135,…,135),(200,200,…,200) 

11 Generalized Trig 2, 4, 10, 100 (1, -1 ,…,-1), (5, 5, …, 5), 

(12, 12, …, 12), (23, 23, …23) 

12 Raydan1 2, 4, 10, 100 (1, 1, …, 1), (3, 3, …, 3), 

(-0.5, 1, …, 1), (-10, -10, …,-10) 

13 Hager 2, 4, 10, 100 (-1, -1, …, -1), (21, 21, …, 21), 

(23, 23, …, 23), (-23, 23, …,23) 

14 Perturbed Quadratic 2, 4, 10, 100 (0.5,0.5, …,0.5),(1, 1, …,1), 

(101,101, …, 101), (105, 105, …, 105) 

15 Quadratic Penalty QP2 2, 4, 10, 100, 500 (-11, 11, …, 11), (13, 13, …, 13), 

(-15, 15, …, 15), (-25, 25, …, 25) 

16 Feudenstein & Roth 2, 4, 10, 100, 500, 1000 (1, 3, …, 3), (7, 7, …, 7), 

(23, 23, …, 23),(33, 33, …, 33) 

17 Rosenbrock 2, 4, 10, 100, 500, 1000, 

10000 

(13, 13, …, 13), (24, 24, …,24), 

(33, 33, …, 33), (35, 35 , …, 35) 

18 Shallow 2, 4, 10, 100, 500, 1000, 

10000 

(11, 11, …, 11), (25, 23, …,23), 

(25, 25, …, 25), (35, 35, …, 35) 

19 Extended Tridiagonal 2, 4, 10, 100, 500, 1000, 

10000 

(12, 12, …, 12), (17, 17, …,17), 

(20, 20, …, 20),(30, 30, …, 30) 

20 Diagonal 4 2, 4, 10, 100, 500, 1000, 

10000 

(2, 2, …, 2), (5, 5, …,5), 

(10, 10, …, 10), (15, 15, …, 15) 

21 Extended Denschnb 2, 4, 10, 100, 500, 1000, 

10000 

(3, 3, …, 3), (8, 8, …,8), 

(-15, 15, …, 15), (-25, 25, …, 25) 

22 Extended Beale 2, 4, 10, 100, 500, 1000, 

10000 

(-0.5, 0.5, …, 0.5), (0.5, 1, …,1), 

(-2, -0.5, …, -0.5), (7, -9, …, -9) 

23 Himmelblau 2, 4, 10, 100, 500, 1000, 

10000 

(0, 1, …, 1), (0.5, 5, …,5), 

(-6, -6, …, -6), (-15, 5, …, 5) 

24 Generalized Quartic 2, 4, 10, 100, 500, 1000, 

10000 

(0.5, 0.5, …, 0.5), (1, 1, …, 1), 

(3, 3, …, 3), (5, 5, …, 5) 

25 Ext White and Holst 2, 4, 10, 100, 500, 1000, 

10000 

(0, 0, …, 0), (-0.5, 1, …,1), 

(-5, 10, …, 10), (-7, 7, …, 7) 
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Fig.1: Performance profile based on the number of iterations.  
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Fig.2: Performance profile based on the CPU time. 
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Clearly, from Figures 1 and 2, we realize that our proposed algorithm was able to 

solve 100% of all the test problems, whereas, the FR method was only able to 

solve 81% of the test problems, AMRI solve 90% of the problems, and PRP was 

only able to solve 91% of the test problems. Therefore, we conclude that SMAR 

method performs better than FR, PRP and AMRI methods.   

 

 

5. Conclusion 
 

In this study, we have examined the conjugate gradient method with a new 

formula (12) under the exact line search and have proved that it converges 

globally under some assumptions. We have also shown that the sufficient descent 

condition holds for all search directions if we use the exact minimization rule. 

Numerical results show that our proposed method performs better than FR, PRP 

and AMRI. In future, we hope to test this new SMAR

k  using inexact line search. 

 

 

Acknowledgments. The authors would like to thank the government of Malaysia 

for the funding of this research under the Fundamental Research Grant Scheme 

(Grant no. 59256) and also the government of Kano State, Nigeria. 

 

 

References  
 

[1] A. Abashar, M. Mustafa, M Rivaie and M. Ismail, The proof of sufficient 

descent condition for a new type of conjugate gradient method, AIP Conf. Proc. 

296 1602 (2014); http://dx.doi.org/10.1063/1.4882502  

 

[2] B. T. Polyak, The conjugate gradient method in extreme problems, USSR 

Comp. Math.  Phys. 9 (1969), 94-112. 

http://dx.doi.org/10.1016/0041-5553(69)90035-4  

 

[3] D. Touati-Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques, J. 

Optim. Theory Appl. 64 (1990), 379–397. http://dx.doi.org/10.1007/bf00939455  

 

[4] E. Dolan, J.J. More, Benchmarking optimization software with performance 

profile, Math. Prog. 91 (2002), 201–213. 

http://dx.doi.org/10.1007/s101070100263  

 

[5] E. Polak and G. Ribière, Note sur la convergence de directions conjuguée, 

Rev.  Francaise Informat Recherche Operationelle, 3e Année 16 (1969), 35-43. 

 

[6] G. H. Liu, J. Y. Han, and H. X. Yin, Global convergence of the Fletcher-

Reeves algorithm with an inexact line search, Report, Institute of Applied 

Mathematics, Chinese Academy of Sciences, Beijing, 1993. 

http://dx.doi.org/10.1063/1.4882502
http://dx.doi.org/10.1016/0041-5553%2869%2990035-4
http://dx.doi.org/10.1007/bf00939455
http://dx.doi.org/10.1007/s101070100263


Global convergence properties                                                                          1867 

 

 

[7] G. Zoutendijk, Nonlinear programming, computational methods, in Integer 

and Nonlinear Programming, J. Abadie, ed., North- Holland, Amsterdam, (1970), 

37-86. 

 

[8] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate 

gradient methods for optimization, SIAM. J. Optim. 2 (1992), 21-42. 

http://dx.doi.org/10.1137/0802003  

 

[9] J. Sun, J Zhang, Global convergence of conjugate gradient methods without 

line search, Ann. Oper. Res. 103 (2001), 161-173. 

 

[10] M. Al-Baali, Descent property and global convergence of the Fletcher-

Reeves method with inexact line search, IMA J. Numer. Anal. 5 (1985), 121-124. 

http://dx.doi.org/10.1093/imanum/5.1.121  

 

[11] M.J.D. Powell, Convergence properties of algorithm for nonlinear 

optimization, SIAM Rev. 28 (1986), 487-500. http://dx.doi.org/10.1137/1028154  

 

[12] M.J.D. Powell, Restart procedures for the conjugate gradient method, Math. 

Program. 12 (1977), 241-254. http://dx.doi.org/10.1007/bf01593790  

 

[13] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving 

linear systems, J. Research Nat. Bur. Standard. 49 (1952), 409-436. 

http://dx.doi.org/10.6028/jres.049.044  

 

[14] M. Rivaie, M. Mamat, W.J. Leong and M. Ismail, A new class of nonlinear 

conjugate gradient coefficients with global convergence properties, Applied 

Mathematics and Computation. 218 (2012), 11323-11332. 

http://dx.doi.org/10.1016/j.amc.2012.05.030  

 

[15] N. Andrei, An unconstrained optimization test functions collection, Advanced 

Modelling and optimization 10(1) (2008), 147-161. 

 

[16] N. Andrei, Accelerated conjugate gradient algorithm with finite difference 

Hessian / vector product approximation for unconstrained optimization. J. comput. 

Appl. Math.  230 (2009), 570–582.  http://dx.doi.org/10.1016/j.cam.2008.12.024  

 

[17] R. Fletcher, Practical Method of Optimization, Vol. 1, Unconstrained 

Optimization,     John Wiley & Sons, New York, 1987. 

 

[18] R. Fletcher and C. Reeves, Function minimization by conjugate gradients, 

Comput. J. 7 (1964), 149-154. http://dx.doi.org/10.1093/comjnl/7.2.149  

 

[19] W.W. Hager, and H.C. Zhang, A new conjugate gradient method with 

guaranteed descent and efficient line search. SIAM J. Optim. 16 (2005), 170–192.  

http://dx.doi.org/10.1137/0802003
http://dx.doi.org/10.1093/imanum/5.1.121
http://dx.doi.org/10.1137/1028154
http://dx.doi.org/10.1007/bf01593790
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1016/j.amc.2012.05.030
http://dx.doi.org/10.1016/j.cam.2008.12.024
http://dx.doi.org/10.1093/comjnl/7.2.149


1868                                                                             Ibrahim S. Mohammed et al. 
 

 

http://dx.doi.org/10.1137/030601880  

 

[20] Y. F. Hu and C. Storey, Global convergence result for conjugate gradient 

methods, J. Optim. Theory Appl. 71 (1991), 399–405. 

http://dx.doi.org/10.1007/bf00939927  

 

[21] Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong 

global convergence   properties, SIAM J. Optim. 10 (1999), 177-182. 

http://dx.doi.org/10.1137/s1052623497318992  

 

[22] Y.H Dai, Y. Yuan, Nonlinear Conjugate Gradient Method, Shanghai 

Scientific and Technical Publisher, Beijing, 1998. 

 

[23] Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms part 1: 

Theory, J. Comput. Appl. Math. 69 (1991), 129-137. 

http://dx.doi.org/10.1007/bf00940464  

 

[24] Y. Yuan, and W. Sun, Theory and Methods of Optimization. Science press of 

China, Beijing, 1999. 

 

[25] Z. Wei, Y. Shengwei, and L. Linging, The convergence properties of some 

new conjugate gradient methods. Appl. Math. Comput. 183 (2006), 1341-1350. 

http://dx.doi.org/10.1016/j.amc.2006.05.150  

 

 

Received: December 10, 2014; Published: March 9, 2015 
 

 

 

 

http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1007/bf00939927
http://dx.doi.org/10.1137/s1052623497318992
http://dx.doi.org/10.1007/bf00940464
http://dx.doi.org/10.1016/j.amc.2006.05.150

