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Abstract

In this paper we present an algorithm for solving a DC problem non
convex on an interval [a, b] of R. We use the DCA (Difference of Convex
Algorithm) and the minimum of the average of two approximations of
the function from a and b.
This strategy has the advantage of giving in general a minimum to be
situated in the attraction zone of the global minimum searched. After
applying the DCA from this minimum we certainly arrive at the global
minimum searched.
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1 Introduction

The fminbnd function from MATLAB is a standard method for resolution of
a real function minimization defined on a bounded closed interval [a, b] ⊂ R.
It realizes a golden section search and parabolic interpolation. It provides
us with only a local minimum, not necessarily global if the function is not
unimodal [2], [3], [7].
In this paper, we propose an alternate method based on the decomposition of
the function in a difference of convex functions (DC) and the application DCA
algorithm [6], [8].
The DCA also generally provides a local minimum not necessarily global (or
even a critical point) [9], [10], [11].
As the DCA is very sensitive to the choice of the initial point [5], [12], [1],
[4] ,we propose not to choose a point of departure. Instead, we minimize the
average of two approximations of the function from a and b.
This strategy has the advantage of giving generally a minimum to be located
in the attraction zone of the global minimum searched.
We apply the DCA from the minimum found [12], we arrive certainly to the
global minimum searched.

2 Problem Formulation

Let us consider the optimization DC problem:

(Pdc) ⇐⇒ min{f(x) = g(x)− h(x), x ∈ [a, b]}

f :Rn −→ R nonconvex
g :Rn −→ R convex
h :Rn −→ R convex
We want to solve the problem Pdc by applying the DCA to the minimum of
the average of the two approximations of f from a and b (MDC).

2.1 Principle of the (MDC) methode

The DCA is very sensitive to the choice of the starting point. [5], [6]
In the case of a minimization a real function defined on [a, b], the minimum
found when starting from a will generally be different from that found when
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Figure 1: Principle of MDC

starting from b.
We propose not to choose a starting point. Instead we want to minimize the
average of two approximations to f from a and b (MDC) let:

min
1

2
(fk(x, a) + fk(x, b))

with:
fk(x, a) = g(x)− h′(a)(x− a)− h(a)

fk(x, b) = g(x)− h′(b)(x− b)− h(b)

This strategy has the advantage of providing in general a minimum to be
located in the attraction zone of the minimum global searched as illustrated
by the following example:

2.2 The principle of DCA

Note that DCA works only with DC components g and h [8] , [12].
At the k-th iteration of DCA, h is replaced by its affine minorant hk(x) =
h(xk) + 〈x− xk, yk〉 in the neighborhood of xk.
Knowing that h is a convex function, we have thereforeh(x) ≥ hk(x),∀x ∈ X.
As a result, g(x)− [h(xk) + 〈x− xk, yk〉] ≥ g(x)− h(x),∀x ∈ X.
That is to say, g(x)− [h(xk) + 〈x− xk, yk〉] is a majorant function of function
f (x).
Indeed, the surface of fk can be imagined as a bowl being placed directly above
the surface of f; Moreover, the two surfaces touch at point (xk, f(xk))
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Figure 2: Principle of DCA

2.3 Proposition 1:

Let g, h two convex functions, differentiable on X. Puting fk(x) = g(x) −
[h(xk + 〈x− xk, yk〉)]. we have [10] :
•fk(x) ≥ f(x),∀x ∈ X.
•fk(xk) = f(xk).
•∇fk(xk) = ∇f(xk).

2.4 Proof:

Knowing thad h is convex, h(x) ≥ hk(x),∀x ∈ X.
Consequently, fk(x) = g(x)− [h(xk)+ 〈x−xk, yk〉] ≥ g(x)−h(x) = f(x),∀x ∈
X, that is to say: fk(x) = g(x) − [h(xk) + 〈x − xk, yk〉] ≥ g(x) − h(x) =
f(x),∀x ∈ X, that is to say fk(x) ≥ f(x),∀x ∈ X.
fk(x) = g(xk)− [h(xk) + 〈xk − xk, yk〉] = g(xk)− h(xk) + 0 = f(xk).

∇fk(x) = ∇g(x)− yk.
Since g is differentiable, we have: yk = ∇h(xk). This is why ∇fk(x) =
∇g(x)−∇h(xk).
Finally, we obtain ∇fk(xk) = ∇g(xk)−∇h(xk) = ∇f(xk).
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2.5 Proposition 2:

1.Sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} decrease and tend to the
same limit β which is higher than or equal to the global optimal value α.
2. If (g−h)(xk+1) = (g−h)(xk) the algorithm stops at iteration k+1, and the
point xk (respectively yk) is a critical point of g-h (resp. h∗ − g∗).
3. If the optimal value of Problem (P) is finite and if Sequences {xk} and {yk}
are bounded, then any value of adherence x∗ of Sequence {xk} (respectively
y∗ of Sequence {yk}) is a critical point of g-h (resp. h∗ − g∗). [10]

2.5.1 Remark:

Thanks to Proposition 2, DCA stops if at least one of Sequences {(g−h)(xk)},
{(h∗ − g∗)(yk)}, {xk}, {yk} converges. In practice, we often use the following
stop conditions:
• |(g − h)(xk+1)− (g − h)(xk)| ≤ ε.
• ‖xk+1 − xk‖ ≤ ε.

2.6 Properties of DCA

1- The DCA constructs a sequence {xk} such that Sequence {f(xk)} is decreas-
ing. This can be easily verified on the figure 2, because xk+1 is a minimum of
fk ( therefore fk(xk) ≥ fk(xk+1) and f(xk+1) ≤ fk(xk+1), as fk(xk) = f(xk).
Finally, we have f(xk) ≥ fk(xk+1) ≥ f(xk+1). This shows that Sequence
{f(xk+1)} is decreasing.
2- For the boundedness and convergence of DCA, knowing that f:Rn −→
R ∪ {+∞} is bounded from below in Rn, Sequence {f(xk)} is also bounded
from below. We know that a sequence {f(xk)} that is decreasing and bounded
from below is convergent.
3- When DCA converges to a point x∗, this point must be a generalized KKT
point. this can be easily understood with the help for Figure.2. If we start
DCA from a generalized KKT point of f (x∗ the figure), then DCA stops
immediately at this point because it is also a minimum of f ∗ ( the convex
majorant function defined at point x∗ by f(x∗) = g(x)− [h(x∗) + 〈x− x∗, y∗〉],
y∗ ∈ ∂h(x∗)).
4- It can be seen, thanks to the figure that DCA has the option to skip certain
neighborhoods of local minima. For example, DCA jumps a local minimum
between xk and xk+1 then arrives at a neighborhood of the global solution.
Though we can not always ensure that this phenomenon accurse, we can un-
derstand that the performance of DCA is likely to depend on the DC decom-
position DC and on the position of the initial point.



6 Leslous Fadila, Philippe Marthon and Ouanes Mohand

3 DCA (DC Algorithm)

Initial Step: x0 given, k=0.
Step 1: We search yk ∈ ∂h(xk).
Step 2: We determine xk+1 ∈ ∂g∗(yk).
Step 3: If the stop conditions are satisfied then DCA is terminated; Otherwise
k=k+1 and we repeat the Step 1.

4 Application of DCA:

4.1 Example 1:

(P ) ⇐⇒
{

f(x) = (x− 1)(x− 2)(x + 1)(x + 2) −→ Min
x ∈ [−3, +3]

DCA is applied from Point 3 and Point -3, Next we look for the minimum of
the two minima in order to find the global minimum.
g(x) = x4 + 4, h(x) = 5x2, h′(x) = 10x, yk = ∇h(xk)
If x0 = 3, k = 0, y0 = 30
Step 1
x1=1,96, y1 = 19, 6
Step 2
x2 = 1, 7,y2 = 17
Step 3
x3 = 1, 58, y3 = 15, 8
such as |x3 − x2| = |1, 58− 1, 7| < ε
Then x=1,58 is the optimal solution of the problem (global minimum) with:
f(1,58)=-2,25
If x0 = −3, k = 0, y0 = −30
Step 1
x1=-1,96, y1 = −19, 6
Step 2

x2 = −1, 7,y2 = −17
Step 3
x3 = −1, 58, y3 = −15, 8
As we have |x3 − x2| = | − 1, 58 + 1, 7| < ε
Then x=-1,58 is the optimal solution of the problem (global minimum) with:
f(-1,58)=-2,25.
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Figure 3: Graphical Solution of Example 1 (DCA)

4.2 Remark:

Since f(-1,58)=f(1,58), applying the DCA from -3 or from 3, we arrive at the
global minimum because function f is symmetrical.
The standard function fminbnd of MATLAB gives the same solution x=1,58
(global minimum)

4.3 Exampl 2:

(P ) ⇐⇒
{

f(x) = (x− 1, 2)(x− 1, 8)(x + 1)(x + 2) −→ Min
x ∈ [−3, +3]

We apply the DCA from Point 3 and Point -3. Next, we look for the minimum
of the two minima in order to find the global minimum.
g(x) = x4 + 0, 48x + 4, 32, h(x) = 4, 84x2, h′(x) = 9, 68x, yk = ∇h(xk)
If x0 = 3, k = 0
Step 3 of DCA gives:
x3 = +1, 58(nonglobal, localminimum)
If x0 = −3, k = 0
Step 3 of DCA gives:
x3 = −1, 58 (global minimum).
Fminbnd function of MATLAB gives the solution x=1.58 (non global, local
minimum)
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Figure 4: Graphical Solution of Example 2 (DCA)

4.4 remark:

In this example we have two minima: One is global and the other is local.
So we are Complied to take the minimum of the two, which is a global mini-
mum.
The solution of example 2 is:
x=-1,58 (minimum global)
The solution of Example 2 with the standard function fminbnd of MATLAB
is:
x=+1,58 (local minimum).

4.5 Example 3:

(P ) ⇐⇒
{

f(x) = (x− 1)(x− 2)(x + 1.8)(x + 1.2) −→ Min
x ∈ [−3, +3]

g(x) = x4 − 0, 48x + 4, 32, h(x) = 4, 84x2, h′(x) = 9, 68x
yk = ∇h(xk)
If x0 = +3
Step 3 of DCA gives the solution x=+1,58 (global minimum).
If x0 = −3
Step 3 of DCA gives the solution x=-1,58 (local minimum).
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Figure 5: Graphical Solution of Example 3 with DCA

The standard function fminbnd of MATLAB gives the solution x=-1,58 (local
minimum).

4.6 Remark:

DCA is very sensitive to the starting point. Then we propose in Example 4 to
solve the problem of Example 3 with the proposed method, and to obtain the
global solution with a single iteration of DCA.

5 Algorithm of the proposed Method (MDCA):

Step O: x0 = min1
2
(fk(x, a) + fk(x, b)), k = 0.

Step 1: Application of DCA from x0.

6 Application of the proposed algorithm (MDCA)

6.1 Example 4:

(P ) ⇐⇒
{

f(x) = (x− 1)(x− 2)(x + 1.8)(x + 1.2) −→ Min
x ∈ [−3, +3]

g(x) = x4 − 0, 48x + 4, 32, h(x) = 4, 84x2, h′(x) = 9, 68x
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yk = ∇h(xk)
We aim to minimize the average of the two approximations of f from -3 and
from +3, (fk(x,−3), fk(x, +3)) with:
fk(x,−3) = g(x)− h′(−3)(x + 3)− h(−3)
fk(x, +3) = g(x)− h′(+3)(x− 3)− h(+3)
Therefore:
fk(x,−3) = x4 + 28, 56x + 47, 88
fk(x, +3) = x4 − 29, 52x + 47, 88
Step:0

Solve the problem convex (P ′) following:

(P ′) ⇐⇒ min
1

2
[fk(x,−3) + fk(x, +3)]

x=0,48 is the solution of Problem (P ′)
Step:1
Application of DCA from x=0,48
x0 = 0, 48, k = 0, y0 = 4, 64
x1 is the solution of the convex problem:
min{x4 − 16, 11x + 5, 44}
x=1,58 is the optimal solution (global minimum) of Problem (P)
While the standard function fminbnd of MATLAB gives a local minimum (x=-
1,58).

6.2 Remark:

Using the proposed method we did not chose a starting point, instead we want
to minimize the average of two approximations of f from 3 and from -3 which
will provide a minimum located in the attraction zone of the global minimum.
DCA is applied from this minimum, which gives the global minimum searched.

7 Conclusion

We dealt in our work with a particular class of optimization problems, namely:
non convex problems (DC).
The strategy of minimizing the average followed by the standard application of
DCA has led to the production of the global minimum of function f, while the
standard function fminbnd of MATLAB found a non global, local minimum.
It now remains to test other examples to better evaluate the pertinence of this
strategy, reinforcing the importance of DCA in solving non convex problems.
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Figure 6: Solution of Example 4
(DCA)

Figure 7: Solution of Example 4
(MDCA)
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