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Abstract

This paper deals with the weak mixing of semigroup actions. We
show that a system of semigroup action (S, X) is weakly mixing if f it
has a uniform positive sequence entropy and it is topologically transitive,
where X is a compact Hausdorff space and S is an abelian monoid
semigroup.
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1 Introduction

A topological dynamical system in the present article is a triple (S, X, 7), where
S is a topological semigroup, X is at least a compact Hausdorff space and

T:SxX — X, (s,z) — sx
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is a surjective continuous action with the property that ¢(sx) = (ts)z for all
x € X, t,s € S. Sometimes we call it as a S-system, write it as (S, X). If
S={T":n=0,1,2,...} and T : X — X is a continuous surjective map,
then the classical dynamical system (S, X) is called a cascade. We use the
standard notation: (X,T). Moreover to avoid uninteresting cases we assume
that S and X are infinite.

Let (S, X) be a S-system. We call (S, X) is topologically transitive, if for
any given nonempty open subsets U,V of X, there exists s € S, such that
UNs™ 'V # 0; We call (S, X) is weakly mixing, if for any given nonempty open
subsets Uy, Vi, Uy, Va of X there is s € S, such that (U; x Uy) N (s x s)~ (V] x
Va) # 0.

We need the following definition.
Let (S, X) be a S-system. An infinite sequence A = {s1,s2,...,8;,...} C S,
U is a finite open cover of X. Let

1
ha(S,U) = limsup ﬁlog(N(\/?zlsZ-_IU)),

n—o0

where N (V™ s7'U) = min{|a| : « is the finite subcover VI, s; U}, | is the
cardinality of a.
The following definition is defined in [1][2].

Definition 1.1 Let (S, X) be a S-system.

(1)We call (x1,z2) € X x X is a sequence entropy pair of (S, X), if x1 # w2,
and for any disjoint closed neighborhoods U; of points x;, respectively, where
i =1, 2, there ezists an infinite sequence A = {s1,S2,...,8;,...} C S, such
that ha(S,U) > 0, where U = {Uf,Us}. Let SE(S,X) denote the set of
sequence entropy pairs of (S, X);

(2)We call (S, X) has a uniform positive sequence entropy, if X x X\Ax =
SE(S,X), where Ax = {(z,z)|x € X};

(3)We call (z1,12) € X x X\Ax is a weakly mizing pair, if N(Uy,Uy) N
N(Uy,Uy) # O for any open neighborhood U; of x;, where i = 1,2. Let
WM(S, X) denote the set of weakly mizing pairs of (S, X).

In the classical topologically dynamical system, W. Huang and X. Ye in [2]
showed the following result:

Theorem 1.1 [2] Let X be a compact metric space, T : X — X be a
continous surjective map. Then the following statements are equivalent:

(1) (X, T) is weakly mizing;
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(2) WM(X,T) = X x X\Ax;
(3) (X, T) has a uniform positive sequence entropy.

Recently, the dynamical system of semigroup actions was interested by us,
for example, X. Yan and L. He[3] have studied the sensitivity of semigroup
actions. In this article we derive a similar result to Theorem 1.1, for the
actions of more general semigroups. Our main result is Theorem 1.2.

Theorem 1.2 Let (S, X) be a S-system, where X is a no isolated point
and compact Hausdor f f space. S is an abelian monoid semigroup. Then the
following statements are equivalent:

(1) (S, X) is weakly mizing;

(2) WM(S, X) = X x X\Ax;

(3) (S, X) has a uniform positive sequence entropy and it is topologically
transitive.

Remark The Theorem 8.6 in [1] pointed out that (S, X)) is weakly mixing
iff (S, X) has a uniform positive sequence entropy, but we do not see the
detailed proof in [1]. The proof of Theorem 1.2 in this article is simple.

2 Preliminaries

Now, we recall some notions of semigroup. A semigroup S is called a abelian
semigroup, if s189 = Sos1 for any s1,s9 € S ; A semigroup S is called monoid
semigroup, if S has an identity e € S.

Let (S, X) be a S -system, U,V be nonempty open subsets of X, s € S.
Denote

sTWU={reX:svelUl;

NUV)={seS:UNs 'V #0}.

Definition 2.1[4] [5] We call a set P C S is thick, if for any finite set
F C S, there exists s € S such that F's C P.

Definition 2.2[5] Let (S, X) be a S-system.

(1) (S, X) is called thick transitive, if N(U, V) is thick for any nonempty
open subsets U,V of X;
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(2) (S, X) is called thick center, if N(U,U) is thick for any nonempty open
subset U of X.

Definition 2.3 [6] Let S be a semigroup.

(a) A collection of nonempty sets of S is called a filter, if it satisfies:

(1) 0 & P;

(2) if F1 € P and Fy C F, then F, € P;

(3) for any Fy, F» € P, F1 (| F; € P.

(b) A collection of nonempty sets of S is called a filter base, if 3] = {A :
there exists a B € 3 such that A D B} is filter.

The following Theorem is showed in [5], where the equivalence of (1) and
(4) is proved in [6].

Theorem 2.4[5] Let (S, X) be a S-system, where S is an abelian monoid
semigroup. Then the following statements are equivalent:

(1) (S, X) is weakly mizing;

(2) N(U,U)NN(U,V) # 0 for any nonempty open sets U,V of X ;
(3)N(U,U)NN((V,U) # 0 for any nonempty open sets U,V of X ;

UNNU,V): U,V are nonempty open sets of X } is a filter base;

(5) (S, X) is thick transitive;

(6) (S, X) is transitive and thick center.

3 The proof of Theorem 1.2

Definition 3.1[1] Let (S, X) be a S-system. For a tuple A= (Uy,Us,...,Uy)
of subsets of X, where U; C X fori=1,2,...,n. I C S is called an indepen-
dent set for A, if for every nonempty finite subset J = {s1,82,...,8,} C F,
we have

m Slet(i) 7é @
i=1
for allt = (t(1),t(2),...,t(n)) € {1,2,..., k}"™.
Definition 3.2 [1] Let (S, X) be a S-system. We call a pair x = (x1,22) €

XA\ Nx is an IN pair, if for any product neighborhood U, x Uy of , the tuple
(U1, Us) has arbitrarily large finite independence sets.
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The following Theorem is the Theorem 5.9 in [1].

Theorem 3.3 [1] Let (S, X) be a S-system. Let (z1,22) € X*\Ax. Then
(x1,22) is a sequence entropy pair if and only if it is an IN pair.

The proof of Theroem1.2 (1) = (2). Assume that x;, x5 are any two dif-

ferent points of X. Let U,V be any open neighborhood of 1, x5, respectively.
Because (S, X) is weakly mixing, then N(U,U) N N(U,V) # () by Theorem
2.4(2). Thus (x1, z2) is weakly mixing pair of (5, X).

(2) = (1). For any nonempty subsets U, V' of X, we choose x1 € U, x5 € V,
and x1 # x5. By the definition of weakly mixing pair, we get

NU,U)NNU,V) # 0.
So (S, X) is weakly mixing.

(3) = (2). Assume that (z1,x2) is a sequence entropy pair of (S, X), now
we will show (z1,x2) is a weakly mixing pair. Since (z1,x2) is a sequence
entropy pair, thus (x1,23) is a IN pair by Theorem 3.3. Let Uy, Uy be any
open neighborhood of x1, s, respectively. Thus there is a independent set
J = {s1, 89} for (Uy, Us), such that ﬂ§:1 s}lUt(j) # () for any t = (¢(1),t(2)) €
{1,2}% So we get

Sl_lUl N 82_1U1 7£ @,
s UL N sy Uy # 0.

Since (S, X) is also transitive, thus there exists a s € S such that
sTUL N sy ' UL N s sy UL N sy tU) # 0.

So we get

sT UL N s ) Nsy Y (U N s™iy)
= (s7'UiNs s tU) N (55 U Ns™ sy )
= s]'UL Nsy ' UL N s HsTtU NsT sy MU,
= s UL N sy UL N s sy UL N sy M Uy).
# 0.

Thus, Uy N s7U; # 0, Uy N s7'U, # (. This implies that N(Uy,U;) N
N(Uy,Us) # 0, then (21, 22) is a weakly mixing pair of (S, X).
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(1) = (3). By (5, X) is weakly mixing, we will prove (.5, X') has a uniform
sequence positive entropy. For any two different points zq, 22 € X, we only
need to prove that (x1,x9) is an I N pair of (S, X) by Theorem 3.3.

Let Uy, Us be any open neighborhood of xy, xy, respectively, by Theorem
2.4(4)(5), so there exists

S1 € N(Ul, Ul) N N(Ul, UQ) N N(UQ, Ul) N N(UQ, UQ)

It means
Uyo) N 57 Uyry # 0,
for any t = (¢(0),¢(1)) € {1,2}%
Because (S, X) is weakly mixing, then
N(Uyoy N 57 Uiy, Ur) [\ N (Uyoy N 7 Uiy, Ua) # 0,

for any ¢ = (¢(0),#(1)) € {1,2}%
By the Theorem 2.4(4)(5), there exists so € S and sy # s1, such that

Ut(O) N SflUt(l) N S;lUl # @,

Ut(o) N Sl_lUt(l) N 82_1U2 #+ 0.

for any t = (¢(0),¢(1)) € {1, 2}
That is,
Uiy N Sl_lUt(1) N Sg_lUt(2) # 0,

for any ¢ = (¢(0),¢(1),¢(2)) € {1, 2}>.
Now we may assume that there is a finite set J = {s1, o, ..., s;} such that

Ut(o) N SflUt(l) N---N SflUt(l) # 0,

for any ¢ = (¢(0),¢(1),£(2),...,t(1)) € {1, 2}
Because (S, X) is weakly mixing, so we have

N(Ut(o)ﬂsflUt(l)ﬂ- . -ﬂs;lUt(l), Ul) ﬂ N(Ut(o)ﬂsflUt(l)ﬂ- . -ﬂs;lUt(l), UQ) #* @,

for any t = (¢(0),#(1),¢(2),...,t(l)) € {1,2}'*L. By Theorem 2.4(4)(5), there
exists s;11 € S and ;1 ¢ J, such that

Usio) N sy Uy N+ O Uiy N5 Ungieny # 0.
for any t = (¢(0),t(1),¢(2),...,t(l),t(l + 1)) € {1,2}'2

So, {s1, 82, ..., 841} is independence sets of length [ + 1 for (Uy, Us).
By the induction, we know that (z1,x9) is an I N pair of (5, X).



A note on the weakly mixing of semigroup actions 593

References

[1] D. Kerr, H.F. Li , Independence in topological and C*-dynamics, Math.
Ann., 388(2007), 969-926.

[2] W. Huang, S.M. LI, S. Shao and X.D. Ye, Null systems and sequence
entropy pairs, Ergod. Th. Dynam. Sys., 23(2003), 1505-1523.

[3] X.H. Yan, L.F. He, Two Remarks on Sensitive Dependence of Semi-
dynamical Systems, Southeast Asian Bulletin of Mathematics, 32(2008),
393-398.

[4] B. Divid, E. Robert and N. Mahesh, The topological dynamics of semi-
group actions, Trans Amer Soc, 353(2000), 1279-1320.

[5] X.W. Long, H.Y.Wang and Y.G. Chen, The transitivity of semigroup
action, J. Guangzhou University, 10(2011), 11-14.

[6] H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem
in diophantine approximation, Math Syst Theory, 1(1967), 1-49.

Received: October, 2012



