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Abstract

In this paper we define the exponential function of base e and we
establish its basic properties.We also define the logarithmic function of
base e and we prove its continuity.
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1 Introduction

Let N = { 1, 2, 3, . . .} be the set of natural numbers and let R be the set of
real numbers. Suppose that { fn(x) }∞n=1 is a sequence of functions defined on
E ⊆ R. We say that this sequence converges to the function f(x) on E if

lim
n→∞

fn(x) = f(x) for any x ∈ E.

This means that

∀ ε > 0 ∀x ∈ E ∃N = N(ε, x) ∈ N ∀n ∈ N : n > N ⇒ | fn(x) − f(x) | < ε
(1.1)

In this case we write fn(x)
E→ f(x) (n → ∞).

Suppose that x ∈ R. Let us consider the numbers m0 = m0(x) and n0 = n0(x)
defined as follows :

m0 = m0(x) = {k ∈ N | k > x} and n0 = n0(x) = {k ∈ N | k > −x}
(1.2)

Thus, m0 = 1 and n0 = [−x] + 1 if x ≤ 0 and m0 = [x] + 1 and n0 = 1 if

x ≥ 0 ( [x] is the integer part of x) . It is clear that 1 +
x

n
> 0 for any n ≥ n0
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and 1− x

n
> 0 for any n ≥ m0 . We define the two sequences { fn(x) }∞n=1 and

{ gn(x) }∞n=1 as follows :

fn(x) = 0 if n < n0 and fn(x) =
(
1 +

x

n

)n

if n ≥ n0. (1.3)

Moreover,

gn(x) = 0 if n < m0 and gn(x) =
(
1 − x

n

)−n

if n ≥ m0. (1.4)

Lemma 1. Let x ∈ R and consider the sequences defined by (1.3) and (1.4).
a. The sequence { fn(x) }∞n=1 is increasing for n ≥ n0, that is, fn(x) ≤ fn+1(x)
for any n ≥ n0. In particular it is increasing for x ≥ 0 since n0 = 1.
b. The sequence { gn(x) }∞n=1 is decreasing for n ≥ m0, that is, gn(x) ≥ gn+1(x)
for any n ≥ m0. In particular it is increasing for x ≤ 0 since m0 = 1.

c. 0 ≤ gn(x) − fn(x) ≤ x2

n
gk0(x) for any n ≥ k0 = max(m0, n0).

d. There exist the limits lim
n→∞

fn(x) = sup{ fn(x) |n ∈ N } and lim
n→∞

gn(x) =

lim
n→∞

fn(x) = L. Moreover, fn0(x) ≤ L ≤ gm0(x)

e. If |h| < 1 then

1 + h ≤
(

1 +
h

n

)n

≤
(

1 − h

n

)−n

≤ (1 − h)−1 for all n ≥ 1 (1.5)

Proof.
a. Let n ≥ n0. From the AGM inequality

a1 + a2 + · · · + an+1

n + 1
≥ n+1

√
a1a2 · · ·an+1 (ai > 0, i = 1, 2, ..., n + 1) (1.6)

with

a1 = 1, a2 = a3 = · · · = an+1 = 1 +
x

n
> 0

we obtain

1 +
x

n + 1
=

1 + n(1 +
x

n
)

n + 1
≥ n+1

√(
1 +

x

n

)n

and then

fn+1(x) =

(
1 +

x

n + 1

)n+1

≥
(
1 +

x

n

)n

= fn(x).

This inequality is strict unless x = 0.
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b. Let n ≥ m0. From the AGM inequality (1.6) with

a1 = 1, a2 = a3 = · · · = an+1 = 1 − x

n
> 0.

it follows that

1 − x

n + 1
=

1 + n(1 − x

n
)

n + 1
≥ n+1

√(
1 − x

n

)n

,

and then (
1 − x

n + 1

)n+1

≥
(
1 − x

n

)n

> 0,

which implies

gn+1(x) =

(
1 − x

n + 1

)−(n+1)

≤
(
1 − x

n

)−n

= gn(x).

This inequality is strict unless x = 0.
c. Let n ≥ k0 = max(m0, n0). We have

gn(x) − fn(x) = gn(x)

(
1 − fn(x)

gn(x)

)
= gn(x) (1 − qn) , (1.7)

where q = 1 − x2

n2 . Observe that n ≥ k0 > |x| from where 0 < q ≤ 1 and then
qn ≤ 1 and 1− qn ≥ 0. It is clear from (1.7) that gn(x)− fn(x) ≥ 0 for n ≥ k0.
On the other hand, by virtue of (1.7),

0 ≤ gn(x) − fn(x) = gn(x)(1 − q) (1 + q + · · ·+ qn−1)

≤ gk0(x) · x2

n2 (1 + 1 + · · ·+ 1)

= gk0(x) · x2

n2 · n = x2

n
gk0(x).

Thus,

0 ≤ gn(x) − fn(x) ≤ x2

n
gk0(x) for n ≥ k0. (1.8)

From the last inequality we see that given ε > 0 if we choose a natural number
N subject to N ≥ k0 and N > x2gk0(x)/ε then

|gn(x) − fn(x)| = gn(x) − fn(x) < ε for all n > N.

We have proved that

lim
n→∞

(gn(x) − fn(x)) = 0. (1.9)
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d. Let k0 = max(m0, n0) ≥ m0. By virtue of b and c,

gn(x) ≤ gk0(x) and fn(x) ≤ gn(x) ≤ gk0(x) for all n ≥ k0,

which proves that the sequence { fn(x) }∞n=1 is bounded from above for each
x ∈ R and then lim

n→∞
fn(x) = L, where

L = sup{ fn(x) |n ∈ N } = sup{ fn(x) |n ≥ n0 }.
On the other hand, from (1.9),

lim
n→∞

gn(x) = lim
n→∞

((gn(x) − fn(x)) + fn(x)) = L.

e. Observe that m0 = n0 = 1 since |h| < 1. From a, b and c we obtain

1 + h = f1(h) ≤ fn(h) ≤ gn(h) ≤ g1(h) = (1 − h)−1 for any n ≥ k0 = 1.

2 The exponential function and its properties

In previous section we established the existence of the limits

lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

(
1 − x

n

)−n

for each x ∈ R. This allows us to define a function exp : R → (0,∞) as follows
:

exp(x) = lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

(
1 − x

n

)−n

, x ∈ R. (2.1)

Is obvious that exp(0) = 1. The value exp(1) is special and it is denoted by e
:

e = lim
n→∞

(
1 +

1

n

)n

≈ 2.71828182846

We well call function defined by (2.1) the exponential function of base e. This
function is also denoted by ex.

2.1 Properties of the exponential function

In this section we establish the main properties of the exponential function
starting from (2.1).
Property 1. Let x ∈ R.

i. If x > −1 then exp(x) > 1 + x. In particular, exp(x) > 1 for x > 0.
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ii. If x < 1 then exp(x) ≤ 1

1 − x
. In particular, exp(x) < 1 if x < 0.

Proof .
i. Since x > −1 we have n0 = [−x] + 1 = 1. By virtue of lemma 1, parts a
and d,

exp(x) ≥
(
1 +

x

2

)2

>
(
1 +

x

1

)1

= 1 + x.

ii. If x < 1 then m0 = [x] + 1 = 1. In view of lemma 1 parts b, c and d,
fn(x) ≤ gn(x) ≤ g1(x) for all n ≥ k0 = max(m0, n0) and letting n → ∞ we
obtain

exp(x) = lim
n→∞

fn(x) ≤ g1(x) =
(
1 − x

1

)−1

=
1

1 − x
.

Property 2. ( Multiplicative property )

exp(x + y) = exp(x) exp(y) = exp(y) exp(x) for any x, y ∈ R. (2.2)

In particular,

exp(−x) = (exp(x))−1 =
1

exp(x)
for all x ∈ R. (2.3)

Proof . Let us consider the sequences

fn(x) =
(
1 +

x

n

)n

, fn(y) =
(
1 +

y

n

)n

and fn(x + y) =

(
1 +

x + y

n

)n

,

where n ≥ k0 > |x| + |y|. By lemma 1, part d,

lim
n→∞

fn(x) = exp(x), lim
n→∞

fn(y) = exp(y) and lim
n→∞

fn(x + y) = exp(x + y).

Since h(n)
def
=

xy

n + x + y
→ 0 ( n → ∞ ),we may choose N large enough so

that |h(n)| < 1 for n ≥ N .We obtain

fn(x)fn(y)

fn(x + y)
=

(
1 +

xy

n(n + x + y)

)n

=

(
1 +

h(n)

n

)n

for n ≥ N. (2.4)

In view of lemma 1, part e, from (2.4) it is clear that

1 + h(n) ≤ fn(x)fn(y)

fn(x + y)
≤ (1 − h(n))−1 (2.5)
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Taking into account that lim
n→∞

(1 + h(n)) = lim
n→∞

(1− h(n))−1 = 1 from (2.5) we

obtain lim
n→∞

fn(x)fn(y)

fn(x + y)
= 1, from where

exp(x) exp(y)

exp(x + y)
=

lim
n→∞

fn(x) lim
n→∞

fn(y)

lim
n→∞

fn(x + y)
=

lim
n→∞

fn(x)fn(y)

lim
n→∞

fn(x + y)
= 1.

We have proved that exp(x) exp(y) = exp(x + y).
Property 3. Given t, x ∈ R, if t < x, then exp(t) < exp(x), that is, the
exponential function is strictly increasing on R.
Proof . If x > t then x− t > 0 and making use of Property 1, exp(x− t) > 1.
We have

exp(x) = exp((x − t) + t) = exp(x− t) exp(t) > 1 · exp(t) = exp(t).

Property 4. If x > 0 then 0 < exp(x) − 1 ≤ x exp(x).
Proof . Let n ∈ N. We have

0 <
(
1 +

x

n

)n

− 1 =
(
1 +

x

n
− 1

)((
1 +

x

n

)n−1

+
(
1 +

x

n

)n−2

+ · · ·+ 1

)

<
x

n

((
1 +

x

n

)n

+
(
1 +

x

n

)n

+ · · ·+
(
1 +

x

n

)n)

=
x

n
· n

(
1 +

x

n

)n

= x
(
1 +

x

n

)n

< x exp(x).

Thus,

0 <
(
1 +

x

n

)n

− 1 < x exp(x) for any n ∈ N.

Letting n → ∞ in the last inequality gives

0 < exp(x) − 1 ≤ x exp(x). (2.6)

Property 5. The exponential function is continuous on R, i.e, for a given real
number a and any ε > 0 we may find δ = δ(ε, a) > 0 such that if |x − a| < δ
then | exp(x) − exp(a)| < ε.
Proof . Let us first show that

| exp(t) − 1| ≤ 3|t| for |t| < 1. (2.7)

Indeed, this inequality is obvious if t = 0. Let t 
= 0. If 0 < t < 1 then exp(t) <
exp(1) = e < 3. Consequently, in view of Property 4, 0 < exp(t) − 1 < 3t.
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Now, let −1 < t < 0. From one hand, by Property 1, exp(t) < 1.On the other
hand, 0 < −t < 1 and then 0 < exp(−t) − 1 < 3(−t) = 3|t|, from where

| exp(t) − 1| = | exp(t)(1 − exp(−t))| = exp(t)(exp(−t)− 1) < 3 exp(t)|t| < 3|t|.

We have established (2.7). Let a ∈ R and consider values of x subject to
|x − a| < 1. Setting t = x − a in (2.7) we obtain | exp(x − a) − 1| < 3|x − a|.
Multiplying this inequality by exp(a) and making use of Property 2 we obtain

| exp(x) − exp(a)| < 3 exp(a)|x − a| for any x ∈ R such that |x − a| < 1.
(2.8)

From condition (2.8) it is clear that choosing δ such that

0 < δ < min

(
1

2
,

ε

3 exp(a)

)
,

then | exp(x) − exp(a)| for all x ∈ R such that |x − a| < δ. This means that
lim
x→a

exp(x) = exp(a).

3 The logarithmic function

In view of Property 5, the exponential function is strictly increasing on R.
In view of Property 1, part i, exp(x) > 1 + x > x for x ≥ 0. On the other
hand, if x < 0 then (2.2) gives exp(x) exp(−x) = exp(x−x) = exp(0) = 1 and
then exp(x) > 0. This says that the exponential function exp : R → (0,∞) is
one to one and it admits inverse We will denote it by log and we will call it
logarithmic function of base e : log : (0,∞) → R.
Let y ∈ (0,∞). There exists x ∈ R, uniquely defined, such that exp(x) = y.
Indeed, choose b > 0 subject to b > y − 1. By Property 1, part i, exp(b) >
1 + b > y.
On the other hand, let a be any negative number such that a < 1 − 1/y. By
Property 1, part ii,

exp(a) ≤ 1

1 − a
< y.

We have proved that for any y ∈ (0,∞) we may find two real numbers a and b
such that a < b and exp(a) < y < exp(b). Let us consider the function exp(x)
on the interval [a, b]. Since this function is continuous on [a, b] ( Property 1
), it takes all values between exp(a) and exp(b). This allows us to choose x
on [a, b] for which y = exp(x). This number x is unique since the exponential
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function is one to one. We have proved that function exp : R → (0,∞) is one
to one and onto. Thus, log(y) = x ⇔ y = exp(x). It is clear that

exp(log(y)) = y ∀ y > 0 and log(exp(x)) = x ∀x ∈ R.

Theorem. The logarithmic function log : (0,∞) → R is continuous on (0,∞).
Proof : It is easy to see that given b > 0 and ε > 0 if |y − b| < δ =
min (b(1 − exp(−ε)) , b(exp(ε) − 1)) then | log(y)−log(b)| < ε.This means that
lim
y→b

log(y) = log(b) for any b > 0.

4 Conlusions

We defined two of the most important functions in mathematics: the exponen-
tial and logarithmic functions. This allows to define the exponential function
of base a as s ax = exp(x log(a)), x ∈ R, a > 0 and a 
= 1. From this we may
establish the laws of exponents :

a. axay = ax+y; b.
ax

ay
= ax−y; c. axbx = (ab)x; d.

ax

bx
=

(a

b

)x

; e. (ax)y = axy.

Finally, we may define the logarithmic function as a limit as follows

log(x) = lim
n→∞

n( n
√

x − 1) = lim
n→∞

n(1 − x−1/n) for x > 0.

Starting from this definition we may define the exponential function as the
inverse of logarithmic function.
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