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Abstract

In this paper, we introduce a trust region algorithm for solving a re-
active power compensation (RPC) problem in a multi-objective context.
The trust region algorithm has proven to be a very successful globaliza-
tion technique for nonlinear programming problems with equality and
inequality constraints. The proposed approach is suitable for (RPC)
problems where the objective function may be ill- defined, having a
nonconvex pareto-optimal front. Also, we identify the weight values
which reflect the degree of satisfaction of each objective. The proposed
approach is carried out on the standard IEEE 30-bus 6-generator test
systems to confirm the effectiveness of the algorithm used to solve the
multi-objective RPC problem.

A Matlab implementation of our algorithm was used in solving one
case study and the results are reported.

Keywords: Reactive Power Compensation, Multiobjective Optimization,
Trust Region, Single Optimization

1 Introduction

In the study of the expansion, planning, and operation of power systems, one
of the most important problems is the issue of Reactive Power Compensa-
tion (RPC). Identifying the adequate size and the physical distribution of the
compensation devices in order to ensure a satisfactory voltage profile while
minimizing the cost of compensation, is the main goal of reactive power com-
pensation. In several previous studies of this problem (see [5] and [7]), it has
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usually been regarded as a single objective optimization problem (SOP), where
only one objective is optimized. Multiobjective optimization algorithms are
preferable to solve the (RPC) problem over a single objective optimization al-
gorithm because most problems have more than one objective to be optimized
and usually the objectives are contradictory. For example, the (RPC) prob-
lem requires the optimization of power losses, voltage profile, and investment.
Many studies have been undertaken considering this situation, where multi-
objective optimization algorithms (MOA) were introduced to simultaneously
optimize several independent objectives, (see for example [1], [2], [3], [4], [14],
[17], [21], and [23]), demonstrates how traditional multiobjective optimization
algorithms usually provide a unique and optimal solution.

On the other hand, multiobjective optimization evolutionary algorithms
(MOEA) independently and simultaneously optimize several parameters turn-
ing most traditional constraints into new objective functions (see [1], [2], and
[3]). This seems more natural for real world problems where choosing a thresh-
old may seem arbitrary (see [17]). As a result, a wide set of optimal solutions
(pareto set) may be found. Therefore, an engineer may have a whole set of
optimal alternatives before deciding which solution is the best compromise
from the different features. In this paper we help the decision maker (DM) in
choosing the best comparative solution from all the finite sets of pareto optimal
solutions (see [15]). Our work is based on one simple way to combine multiple
objective functions into a scalar fitness function which is the weighted sum.
Then we do some sort of parametric analysis to name the weight values which
reflect the degree of satisfaction of each objective. In this paper, we intro-
duce a new trust region algorithm for solving our problem. In this algorithm,
an active set strategy is used together with multiplear method to convert the
computation of the trial step to an easy trust region subproblem similar to
the one for unconstrained case. The trust-region strategy for solving general
nonlinear programming problem with equality and inequality constraints has
proven to be very successful both theoretically and practically (see for exam-
ple [8], [10], [11], and [12]). Finally, the approach has been implemented to
select one solution which will satisfy the different objectives to some extent.
The standard IEEE 30-bus 6-generator test system has been used to verify
the validity of the proposed algorithm. The weighting approach is considered
as one of the most useful algorithms in treating multiobjective optimization
problems to generate a wide set of optimal solutions (Pareto set) (see [17]).

In this work, the effect of changing the weights on the compensation cost,
active power losses and voltage deviation was studied to show the degree of
satisfaction of each objective. In each case one weight is changed linearly and
the two other weights are generated.

Here, we introduces some notation for subscripted functions denote func-
tion values at particular points; for example, fr, = f(xy), Vofi = Vaf(xg),
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and so on. The matrix Hj, denotes the Hessian of the objective function at the
point (zy) or an approximation to it. Finally, all norms are ly-norms.

In the following section, we present Reactive Power Compensation (RPC).
In section 3, we discuss the multiobjective formulation of the (RPC) problem
and in section 4, we present the outline of the trust region algorithm which is
used to solve (RPC) problem. We present the implementation of our approach
in section 5 and we discuss results and our approach in section 6. Finally,
section 7 contains concluding remarks.

2 Reactive Power Compensation (RPC)

In order to identify the adequate size and the physical distribution of the
compensation devices for obtaining a satisfactory voltage profile with minimal
compensation cost, we consider the following assumptions in the formulation
of the problem.

The power system is considered only at peak load. A shunt-capacitor bank
cost per MVAr is the same for all busbars of the power system

In this present work, we have identified three objective functions to be
minimized and a load flow equations. The three objective functions are fi,
fa, and f3, which are related to investment, transmission losses, and quality of
service respectively.

The detailed descriptions of these three objective functions is as follows:

First: fi is investment in reactive power compensation devices

minimize f1 =", B;
subject to 0 < f1 < f1,,00s (1)
0 S Bz S B’imaza

where f14 18 the maximum amount available for investment, B; is the com-
pensation at busbar ¢ measured in MVAr and B4, is the maximum compen-
sation allowed at a particular bus of the system. The number n denoted to
the number of buses in the power system. To simplify, we take the price per
MVAr as unity.

Second: f5 is the total active power losses in MW

minimize fo=F, — P,

(2)

subject to P, . < P, <P,

Imazx)

where P is the total active power generated, P is the total system load, P,, .
is the minimum active power generated by the generator and P, . is the
maximum active power generated by the generator.
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Third: f3 is the average voltage deviation per unit (pu)

AT Vi—Vx||2
minimize f3 = VeVl

! (3)

subject to V; <V, <V,

min — tmazx?

1=1,2,...,n

where V; and V;* are the actual voltage and the desired voltage respectively
at busbar ¢ per unity, while V; . and V; . are the minimum and maximum
actual voltage respectively at busbar ¢ per unity. For more details about fi,
fa, and f3 (see [9] and[16]).

The load flow equations illustrated in [20] are the following equations:

AP, = — Py = ZVVY cos(d, — 0y — Opy)

AQ, = Qap— Qcp= ZVVY sin(d, — 0y — Opg)

where Pg, and P, are the real power generations and demands at bus p re-
spectively, while ()¢, and Q)¢ are the reactive power generations and demands
at bus p respectivly. V,, and V, are the voltage magnitude at bus p and g, re-
spectively. Y,, and ©,, are the admittance magnitude and the admittance
angle respectively. d, and ¢, are the voltage angle at bus p and ¢, respectively;
where p=1,2,....n,¢q=1,2,...,n

The physics of the system as well as the desired voltage set points are
reflected throughout the system by the load flow equations. The power flow
equations require that the sums of the net injection of real and reactive power
at each bus are zero, and thus enforce the physics of the power system.

The size of each reactive bank in the power system is represented by decision
vector B, see [6] for example:

B:[B17-827"'7Bi7”‘7Bn]7 BiERu |B1|SBzma:v

in order to represent the amount of reactive compensation to be allocated at
each busbar 7.

(RPC) can therefore be seen as a complex, comprehensive optimization
problem dealing with multiple nonlinear functions with multiple local minima
which may be ill-defined and nonlinear constraints which lead to a nonconvex
Pareto-optimal front, (see [6] and [17]). The trust region concept could cover
these problems to get a finite set of Pareto optimals, where it is difficult for
the (DM) to choose the best compromise solution among these Pareto set.

In the following section we rewrite the reactive power compensation prob-
lem in mathematical form and using a weighting appoach to transform it to a
single objective optimization problem.
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3 Multiobjective Formulation of the RPC Prob-
lem

The mathematical form of the reactive power compensation problem with n-
buses and m-generator is the following multi-objective optimization problem:

minimize f1 =37, B;
minimize fo =P, — P
9; L

ViV I3
n

minimize f3 =
subject to 0 < f1 < f1,,00s
O S BZ S Bimax’ (1>

Vipin S Vi < Vi

min max )

P, <P, <P

9j min T 9j maz’

AP, = Pgy, — Pop = ZZ:l %%Y;chos(ép — 04 — @pq>:
AQp = Qap — Qcp = Egzl VpVaYpesin(d, — 0q — Opy),
where t =1,2,...,nand j =1,....m.

Using a weighting approach to transform problem (1) to a single-objective
optimization problem which has the following form:

minimize f(z) = wy fi + wafo + w3 f3

subject to 0 < f1 < f1,..5

0<B;, <B

imaz )

s (2)

<P

gjmax

Vipin S Vi < Vi

min

P <P,

9imin — ~ 9 ’

AP, = Py — Pep = 32421 VpVqYpaco5(8, — 0 — Opg),

AQp = Qcp — Qop = 22:1 VpVaYpasin(d, — 04 — Opy),
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where 27 = [By,...,; By, Py, ooy Py Vi o, Vil Sy wy = 1, and wy, > 0, k =
1,2,3.

The following section is devoted to presenting the detailed description of
our trust-region algorithm for solving problem (2).

4 Turst Region Algorithm Outline

In this section, we consider the following single objective optimization problem

minimize f(z)
subject to h(x)
9(@)

0, (1)

where the functions f(z) : R**™ — R, h(z) : R — K2 and g(z) :
RItm . RAFIME2 e twice continuously differentiable. The Lagrangian
function associated with problem (1) is the function

Wz, M 1) = f(z) + Ah(z) + 1" g(), (2)

where A € 12" and p € R¥"+2™+2 are the Lagrange multiplier vectors associ-
ated with equality and inequality constraints respectivly.
Following [8], we define a 0-1 diagonal indicator matrix Z(x) € RP*P, whose

diagonal entries are
zi(w) = { 0 if gi(z) <0, (3)

where p = 2n + 4m + 2.
Using the above matrix, we transform problem (1) to the following equality
constrained optimization problem

minimize f(x)
subject to h(z) = 0, (4)
Z(@)glz) = 0

Using a multiplier method, we transform the equality constrained optimiza-
tion problem (4) to the following unconstrained optimization problem

winimize ®(e g i) = 1 Ap) + 2120+ SIWIE
subject to x € RIEm,

where p is the positive parameter and r > 0 is a parameter usually called the
penalty parameter.
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4.1 Computing a Trial Step

We compute the trial step s, by solving the following trust-region subproblem

minimize I + VI's + 25T Hys + 2| Zi(gi + Vi s)|1? + 2| (hi + VAL )2
subject to I|s]| < o,
(6)

where Hj, is the Hessian matrix of the Lagrangian function [(zy, Ak, ) or an
approximation to it. Since our convergence theory is based on the fraction of
Cauchy decrease condition, any method that computes the trial step in such a
way that the fractions of the Cauchy decrease can be used. Therefore, a dogleg
algorithm can be used to compute the trial step. More details can be found in

3].

4.2 Testing the Step and Updating J

Once the trial step is computed, it needs to be tested to determine whether it
will be accepted. To test the step, estimates for the two Lagrange multipliers
Ag+1 and pgoq are needed. Our way of evaluating the two Lagrange multipliers
Ak+1 and g4 is presented in Step 5 of Algorithm (4.3) below.
Let A\gy1 and g1 be estimates of the two Lagrange multiplier vectors. We
test whether the point (xy + sk, Ag11, tkr1) Will be taken as a next iterate.
The actual reduction in the merit function is defined as

Aredy = Uwg, Ay i) — LTrn, Moy pie) — AN hr — Apif, gy
p r
+ f[g;kagk — Qi1 Zkr1Gki) + f[HthQ — el (7)
where AN, = (Aga1 — M) and Apg = (ga1 — fn)-
The predicted reduction in the merit function is defined to be

Pred, = qp(0) — qr(sg) — AN (R + Vhi si) — Apg Zigr
Tk
+ S llhll® = Il + Vi sel”), (8)

where
1
q(s) = I+ VJJZS + isTHks + %HZk(gk + Vg,fs)||2. (9)

After computing a trial step and updating the Lagrange multipliers, the
penalty parameter is updated to ensure that Predy > 0. To update ry, we use
a scheme that has the flavor of the scheme proposed by [10]. This scheme is
described in Step 6 of Algorithm 4.3 below. After that, the step is tested to
know whether it is accepted. This is done by comparing Pred; against Aredy.
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If ﬁ:—z‘;i < m where n; € (0,1) is a small fixed constant, then the step is
rejected. In this case, the radius of the trust region ¢ is decreased by setting
Ok = aqlsgl|, where a; € (0,1), and another trial step is computed using the
new trust-region radius.

If ﬁ%‘;k > 11, then the step is accepted. Our theory requires that at the
beginning of the next iteration, d;,; must be greater than or equal to d,,ip,
where d,,;, is a positive constant chosen at the beginning of the algorithm.
That is, 5 can be reduced below 9,,;,, while finding an acceptable step. But,
Ok+1 = Omin is Tequired at the beginning of the next iteration after accepting
the step sy.

Our way of evaluating the trial steps and updating the trust-region radius
is presented in Step 7 of Algorithm (4.3) below. After accepting the step, we
update the parameter p, and the Hessian matrix Hy. To update pp, we use a
scheme suggested by [24]. This scheme is described in Step 8 of Algorithm 4.3
below.

Finally, the algorithm is terminated when either ||s;| < 1 or ||V.lk|| +

|V grZigrll + ||he|] < &2, for some 1,69 > 0,

4.3 Main Algorithm

A formal description of our trust-region algorithm for solving problem (2) is
presented in the following algorithm.

Algorithm (The Main Algorithm)
Step 0. (Initialization)

Given x; € R*"*™. Compute Z;. Evaluate u; and \; (see Step 5
with k¥ =0 and A\g = (0,0, ...,0)7). Set py =1, 79 =1, 0y = 1, and
8 = 0.1. Choose €1, €3, a1, g, 01, and 1y such that e > 0, g9 > 0,
0<ap <1l<ag, and 0 <n <ny < 1. Choose dmin, Omaz, and oy
such that 0,,i, < 01 < Opas- Set k= 1.

Step 1. (Test for convergence)
If | Valill + |V Zrgell + || hx]] < €2, then terminate the algorithm.
Step 2. (Compute a trial step)

a)Compute the step sj by solving (6)
b) Set xp11 = xk + Sg.

Step 3. (Test for termination)

If ||sk|| < €1, then terminate the algorithm.
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Step 4. (Update the active set)
Compute Zg41.

Step 5. (Compute the Lagrange multipliers .1 and Agyq)
a) Compute pg11 by solving

minimize ||(Vfir1 + Vgt + Vari1 Zeop) ||

subject to L1 > 0, (10)

and set the rest of the components of p;1 to zero.
b) If |V fis1 + Vhri A + Vi1 Zpptia || < e,
then set Agy1 = Ak

Else, compute A\;;1 by solving

minimize ||V fiz1 + Vesitihrr + Vi A|?. (11)
End if.
Step 6. (Update the penalty parameter ry)
a) Set 1y, = max(ry_1, p3).

b) If Predy, < =[||hg||* — || s + VA si]|?],then set

Aagr(sk) — qe(0) + AXL (hy + VAL sg) + Auf Z1.x)
1Akll* = A + VA se]|?

+8.

T =

End if.
Step 7. (Test the step and update the trust-region radius)

Aredy,
If Pred, <.

Reduce the trust-region radius by setting 0, = aq||sk]|
and go to step 2.

: Ared
Else if n; < Tidi < 1), then

Accept the step: xpy1 = o + k.
Set the trust-region radius: g1 = max(dx, dmin)-

Else

Accept the step: xpy1 = o + k.

2657

Set the trust-region radius: dx11 = min{d,ae, max{d,in, @2dx }}.
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End if.
Step 8. (Update the parameters py and oy,)

a) Set prr1 = pr and o4y = Oy
b) T

Tpredy— AN, (h+Vhi i) —Api Zrgr < okl|V gk Zrgr|| min{||Vgx Zege |, 0}

then set prr1 = 2p, and o1 = %ak.
End if.

Step 9. Set k£ =k + 1 and go to Step 1.

5 Implementation of the Proposed Approach

To investigate the effectiveness of the proposed approach the described method-
ology is applied to the standard IEEE 30-bus 6-generator test system, see figure
(1). In [25] we can see a detailed presentation of the data for this system. In
this work, our program was written in MATLAB and run under MATLAB
Version 7 with machine epsilon about 10716,

Given a starting point x;, we chose the initial trust-region radius to be
61 = max(||s?]|, Omin), Where 6,,;, was taken to be &, = 1073, We chose the
maximum trust-region radius to be d,,4, = 10°4;.

The values of the constants that are needed in Step 0 of Algorithm (4.3)
were set to be m; = 107*, my = 0.5, ay = 0.5, ay = 2, 1 = 1078, gy =
1078, and 8 = 0.1. For computing the two components of the trial steps, we
used the dogleg algorithm. Successful termination with respect to our trust-
region algorithm means that the termination condition of the algorithm is met
with €5 = 1078, On the other hand, unsuccessful termination means that the
number of iterations is greater than 300, the number of function evaluations
is greater than 500, or the length of the trial step is less than £; = 1078,

6 Results and Discussions

Here we discuss the effects of changing weights on active power losses, the
compensation cost, as well as the average voltage deviation. As one weight is
changed linearly in each case, the other two weights are generated randomly
thus that: w; +ws +w3 = 1. To obtain the best compromise for the operating
point we observed the corresponding values of the weights for the values of
S (), f2(.) and f3(.).

The three tables (1), (2) and (3) show the values of the weights for the
three cases which were studied, where in each case, one weight is changed
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(&
T

Figure 1: IEEE 30-bus Test System.



2660 B. El-Sobky, Y. Abo-Elnaga and H. Zahed

linearly taking six values, while the other two weights are obtained using the
relation wy +wqe+ws = 1. Figures (2), (3) and (4) show the objective functions
obtained from the six solutions corresponding to the six weights compared to
the weights for the three cases. Thus, we observe that:

1- We obtained the highest cost at the lowest w;, while the highest value of
wy gave us the lowest cost.

2- The change of weight in wy and w3 has less effect on active power losses and
average voltage division, respectively, than the change of the weight w; which
has a stronger effect on compensation cost.

3- In the light of these results we recommended to choose w; around 0.6 because
the change of the cost corresponding to values of w; higher than 0.6 is not
significant.

7 Conclusions

In this paper we use a trust region method to solve the reactive power com-
pensation problem formulated as multiobjective optimization problem with
competing amounts of reactive compensation devices, active power losses and
voltage deviation. We have arrived at the conclusion that this approach is a
new technique for the numerical, parametric study of RPCs, when the prob-
lem is complex and has many real world applications. We have solved the
RPC, by applying the proposed technique while considering three objectives
simultaneously. Non-convex multiobjective optimization problems have been
efficiently solved using the proposed approach. Our approach is interactive
because it allows the decision maker to specify the relative weights of criterion
importance which show the degree to which the objectives have been satisfied.
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Run w1

W2

w3

0
0.2000
0.4000
0.6000
0.8000
1.0000

S Ok W N~

0.5721
0.6705
0.2118
0.2636
0.0759

0.4279
0.1295
0.3882
0.1364
0.1241

Table 1: Different weights (w; is changed linearly).

Run w1 Wy ws
1 ]0.6028 0 0.3972
2 | 0.5676 0.2 0.2324
3 | 0.4573 0.4 0.1427
4 10.2218 0.6 0.1782
5 | 0.1468 0.8 0.0532
6 0 1.0000 0

Table 2: Different weights (ws is changed linearly).

Run w1

Wa

w3

0.7477
0.2994
0.1576
0.1354
0.1976

DOk W N~

0.2523
0.5006
0.4424
0.2646
0.0024

0.2
0.4
0.6
0.8

Table 3: Different weights (w3 is changed linearly).
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(b) Plot showing (f1, f2 and f3)

Figure 2: Plot showing best compromise solution for different weights in 6 runs

of table 1.
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of table 2.
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of table 3.
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