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Abstract. This paper investigates the synchronization of two Newton-Leipnik
Chaotic Systems. A new sufficient condition of global asymptotic synchronization is
attained from the theory of stability of time-varying systems. In addition , compared
with the previously proposed method , the sufficient condition for the
synchronization of two linearly coupled unified chaotic systems is simpler and less
conservative , and the range of coupled coefficients is wider. Numerical simulation
shows the effectiveness and feasibility of this method.
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1. Introduction

Chaos has already had an enduring effect on science, and issues of chaos control
and synchronization have been extensively investigated since the early 1990s [1-3].
Meanwhile, various effective schemes, including the OGY method[4], adaptive
control, feedback control, backstepping design [2] and active control [3], nonlinear
control [5],etc., have been widely applied in this field. Since Pecoro Carroll and put
forward the chaotic synchronization method in 1990 [6].At home and abroad, a lot of
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different chaotic synchronization methods were put forward [3,7], such as
completely synchronization, phase synchronization, generalized synchronization,
synchronization, projection synchronization and so on.

Recently, because of the application of chaos in the Secure communication, the
coupling synchronization in two same chaotic systems have caused considerable
concern. Agiza [8] applied the activities controller implement into synchronization of
two Rossler chaotic systems and two Chen chaotic systems. Li [9] used an active
controller to achieve nonlinear coupled synchronization of Chua's circuit. They
achieve synchronizat- ion of unified chaotic system and of Lorenz chaotic system
with the linear coupling approach in papers[10-12]. But the basis for the coupling
coefficient selection is different. According to Routh-Hurwitz criterion and the
derivation of rigorous mathematical theory, LU obtain a sufficient condition for
synchronization of two linear coupling chaotic systems. Li proved a negative definite
symmetric matrix by the mathematical theory,and there were negative eigenvalues
in the matrix. By the asymptotically stable Error system, To derive a sufficient
condition of coupled chaotic systems’ synchronization was gained. With the spectral
lyapunov stability theory and linear matrix inequalities and Matlab Control System
Toolbox, Park Calculated the solution of the optimal linear matrix inequalities and
obtained the stability criterion of unified chaotic system’s gradual synchronization.

This paper considers two linear coupling Newton-Leipnik Chaotic Systems and
the theory of linear time-varying continuous system stability. Without too
cumbersome derivation of the mathematical theory, we can get to make two different
initial value of chaotic systems achieve synchronization by a sufficient condition.
There aren’t many constains in criterion expressions by comparing, and a broader
range of coupling coefficient. This method is applied to the Newton-Leipnik Chaotic
System, and satisfactory results were achieved. Thus the effectiveness and feasibility
of the method wereconfirmed.

2. System description and its basic properties

The Newton-Leipnik chaotic system, derived in [1], is described by the following
differential equation system

X=—-ax+Yy+10yz
y=—-x-0.4y+5xz 1)
z =bz —5xy

where X, y and z are the state variables, parameters aand b are the two positive real

constants.
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The divergence of this flow is given by

V-V=%+ﬂ+§=—a—0.4+b @
oXx oy oz

Obviously, the system is dissipative if —a—0.4+b<0.When a=0.4andb=0.175,
the system converges to a set ofmeasure zero exponentially.In fact, for the initial

conditions (5,1,20), one can obtain a double strange attractor,the upper and the

lower attractor, respectively (see Fig. 1). Therefore, this system has a attractor with
parameters a=0.4 andb=0.175.

Fig. 1. a attractor of the chaotic system with a=0.4andb =0.175.

3. Linear coupled synchronization of Newton-Leipnik chaotic system

3.1 Linear coupled Newton-Leipnik chaotic system
Consider the linear coupling of two identical Newton-Leipnik chaotic system:

¥ =—ax + X, +10%,X; +d; (Y, —X,)
X, ==X —0.4%, +5xX; +d, (Y, — X,)
X3 = DXy =5%,X, +d;(Y; —X;)

Yo ==y, + Y, +10y,y; +d; (% — V)
yz —Y _O-4y2 +5y1y3 + dz(xz - yz)
ys bys _5y1y2 + ds(xa - y3)

(3)

where x,y.(i=1,2,3) are the state variables,and d (i=1,2,3) are coupling

coefficients to ensure that need to synchronize two chaotic systems. Here do not like
the literature [10-12] in for d. > 0limit.

Defined as shown in the error signal:
& (1) =x -y ()
&, (1) =% (1) -y, (1) (4)
€ )= X3 - Y3 )
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Error system of equation (3) is
€ =—ae +e, +10x,e, +10y,e, —2d.e,
é, =—e —0.4e, +5xe,+5y,e, —2d.e, . (5)
é, =be, —5xe, -5y,e —2d,e,
The coefficient matrix of equations (6) is
-a-2d, 1+10y, 10x,
J(t)=| -1+5y, -0.4-2d, 5x |. (6)
b-5y, -5x -2d,

Obviously, just let the coupling coefficients satisfy certain conditions, and the
error system (5) tends to infinity in time asymptotically stable. We can achieve
synchronization of two coupled Newton-Leipnik chaotic systems of different initial
conditions and same structures.

As the error system is linear, and its coefficient matrix is time-varying, so by using
stability theory of a continuous time-varying linear system, determine to make the
error system (5) asymptotically stable, and the coupling coefficients must satisfy .

Here the stability of linear time-varying continuous system theory is demonstrated.
3.2 Stability theory of continuous time-varying linear system

Consider the following form of third-order linear time-varying systems:

X = ail(t)xi +a, (t)xz + a13(t)xs
X, =8y (t)X1 +ay (t)X2 + 8y ® X5 (7)
Xy = aSl(t)Xl +ag (t) X; + 8 (t)xs

Assuming the coefficients a, (t) are continuous and bounded, and set a,(t)<-a<0

(i=123),vt>t,.The coefficient matrix A(t) is divided into 2 x 2 blocks, as

follows.
a,(t) a,(t) :as()
At) =] a,(t) a,(t) :ay(t) (8)
ay (1) an(t) :ag(t)
Let by, = sup {a,(t)+|a, (t)],a, 1) +|a, ()]},

ty<t<+oo

blZ = . ‘E?pw {|ai3 (t)| J |a23 (t)|} )

b, = t Eﬂ?@ {|a31(t)| |2 (t)|} ,

b,, = sup {|a33(t)|},

ty<t<+oo
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_ b, by,
B_(bn bzzj. ©

Consider auxiliary equations:

V, =bV, +b.V,,

V, =b,V, +b,V, . (10)
Theorem If the variable coefficient linear system (7) continuous and
bounded, a, (t) <0 (i=12,3) and these coefficients of its auxiliary equations (9)
satisfy:

1) b, <-p<0,b,<-f<0,pis apositive constant;

2) All eigenvalues have negative real parts.

The zero solution of the system (7) is asymptotically stable.
3.3 Case analysis and numerical simulation

By the stability theory of linear time-varying system, study stability of error
system (5), and obtain range of the coupling coefficient. Then we give out a
sufficient condition of the global incremental synchronization of two identical
Newton-Leipnik chaotic systems. Finally, numerical simulation is given out. Above
illustrate the correctly theoretical analysis.

First, the error system corresponding to the symmetric matrix J(t) corresponds

with time-varying matrix A(t) , then get the following expression:

b, = sup {-a—2d, +|-1+5y,|,~0.4—2d, +[L+10y,|},

ty<t<+oo
b, = sup {[10%][5,}
b, = SUp {Ib=5y,|.|-54},

b,, = sup {-2d,}.

ty<t<+oo

Based on the above stability of linear time-varying system theory, the error system

(5) is global asymptotic stability, as long as inequality b, <0,b,, <0,b,b,, >b, b,

b,,b, are non-negative numbers, Apparently b, b, is satisfied and a sufficient

condition will be met as follows:
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—a—2d, +|-1+5y,| <0,

-0.4-2d, +[1+10y,| <0,

~2d, <0,

(—a—2d, +|-1+5y,|)-(-2d,) > m?>
(-0.4-2d, +[1+10y,|)-(-2d,) > m*-

Where  m = max([5x,|, [L0X,|,|b—5Y,]) -

As the chaotic system is bounded, we can easily select the appropriate coupling
coefficients to satisfy the above inequality. For initial values are different, the same
structure of two Newton-Leipnik chaotic systems is global complete synchronization.

Fourth-order Runge-Kutta method for the simulation, set the initial

value(xl(o),xz(o),xs(o), yl(O),y2(0)1y3(0)) =(1,5,5,1,2,0)and simulation results are

shown in Figure 2, where d, =-1.3,d, =-1.5,d,=0.4.

1 z 3 4 5 ® 7 8 9

Fig. 2. The time response of error states ( e , e,, &, ) .

The above is just sufficient condition of two linear coupling Newton-Leipnik
chaotic systems' synchronization, and it means that some do not meet the conditions
of the coupling coefficient, but also make a global gradual synchronization of
Newton-Leipnik chaotic system.
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Finally, sufficient condition of two Newton-Leipnik chaotic systems’
ynchronization is compared with these literatures [10-12]. First, theories and
methods are not the same. Because the error system of two coupled chaotic systems
synchronization is linear time-varying continuous system, which is used here to
analyze its stability. The sufficient condition of two identical Newton-Leipnik
chaotic systems for linear coupling, the method may be more reasonable than other
methods, so that is to get a new sufficient condition for chaos synchronization.
Second, these literatures [10-12] in the derivation of sufficient conditions of chaotic
systems synchronization , these coupling coefficients are required these

preconditions ofd, > 0(i =1,2,3) , but here we does not require. For example, [11]

requiresd, >14, there is no need. Here the coupling coefficientd, is broader range

of options.
4. Conclusion

In this paper, the linear coupling of the two unified chaotic systems were studied.
By the stability theory of Linear time-varying continuous system, new progressive
sufficient conditions of the global chaos synchronization have been obtained. By
comparing with proposed several methods, we found that this mathod is not only
simple, less constraints, lack of conservation, and a wider range of coupling
coefficient. The method is applied to Newton-Leipnik chaotic system, two identical
chaotic systems can quickly achieve the global incremental synchronization, and
numerical simulations show the effectiveness and feasibility of the method. In
addition, this analysis method was applied to other chaotic systems and control. This
method has good universality, and it is worth further studying.

Acknowledgement. Project supported by the Special Funds of the National Natural
Science Foundation of China (Grant No. 11141003)

References

[1] Leipnik RB, Newton TA. Double strange attractors in rigid body motion with
linear feedback control. Phys Lett A86:63-7(1981).

[2] L.Boutat-Baddas,J.P.Barbot,D.Boutat,R.Tauleinge.Sling mode observers and
observablity singularity in chaotic synchronizationMath. Prol.
Eng.1:11-31(2004).



2566 Shulai Zhang and Guangjuan Yang

[3] Boccaletti S, Grebogi C, Lai Y-C. The synchronization of chaotic systems.Phys
Rep36:1-101(2002).

[4] Ott Edward, Grebogi Celso, Yorke James A. Controlling chaos.Phys Rev
Lett64:1196-1199(1990).

[5] Kaplan JL, York YA. A regime observed in a fluid flow model of Lorenz.Comm
Math Phys ;67:93-108(1979).

[6] Pecora L M and Carroll T L Phys.Rev. Lett. 1:64-82(1990).

[7] Park JH Stability criterion for synchronization of linearly coupled unified chaotic
systems. Chaos, Solitons& Fractals23:1319-1325(2005).

[8] Yassen MT. Chaos control of chaotic dynamical system using backstepping
design.Chaos, Solitons &Fractals27:537-48(2006).

[9] Marlin Benjamin A. Periodic orbits in the Newton-Leipnik system.Int J Bifurc
Chaos12:511-23(2002).

[10] J. H. L'uand J. A. Lu, Chaos Solitons Fractals14:529(2002).

[11] D. M. Li, J. A. Lu, and X. Q. Wu, Chaos Solitons Fractals 23:79(2005).

[12] Park J H Chaos , Solitions & Fractals ;23:1319(2005).

Received: December, 2011



