
 
Applied Mathematical Sciences, Vol. 6, 2012, no. 52, 2559 – 2566 

 
 
 

Coupled Synchronization of the  

Newton-Leipnik Chaotic System 
 

 

1Shulai Zhang and 2Guangjuan Yang 
 

1. Institute of Mathematics and Statistics, 
Changshu College of Technology, 

Changshu, Jiangsu 215500, P.R. China 
happyzsl@hotmail.com 

 
2. Xupu High Middle School, Changshu 

Jiangsu 215500, P.R. China 
yangguangjuan@163.com 

 
 
Abstract. This paper investigates the synchronization of two Newton-Leipnik 
Chaotic Systems. A new sufficient condition of global asymptotic synchronization is 
attained from the theory of stability of time-varying systems. In addition , compared 
with the previously proposed method , the sufficient condition for the 
synchronization of two linearly coupled unified chaotic systems is simpler and less 
conservative , and the range of coupled coefficients is wider. Numerical simulation 
shows the effectiveness and feasibility of this method. 
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1. Introduction 
 
Chaos has already had an enduring effect on science, and issues of chaos control 

and synchronization have been extensively investigated since the early 1990s [1-3]. 
Meanwhile, various effective schemes, including the OGY method[4], adaptive 
control, feedback control, backstepping design [2] and active control [3], nonlinear 
control [5],etc., have been widely applied in this field. Since Pecoro Carroll and put 
forward the chaotic synchronization method in 1990 [6].At home and abroad, a lot of  
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different chaotic synchronization methods were put forward [3,7], such as 
completely synchronization, phase synchronization, generalized synchronization, 
synchronization, projection synchronization and so on. 

Recently, because of the application of chaos in the Secure communication, the 
coupling synchronization in two same chaotic systems have caused considerable 
concern. Agiza [8] applied the activities controller implement into synchronization of 
two Rossler chaotic systems and two Chen chaotic systems. Li [9] used an active 
controller to achieve nonlinear coupled synchronization of Chua's circuit. They 
achieve synchronizat- ion of unified chaotic system and of Lorenz chaotic system 
with the linear coupling approach in papers[10-12]. But the basis for the coupling 
coefficient selection is different. According to Routh-Hurwitz criterion and the 
derivation of rigorous mathematical theory, Lü obtain a sufficient condition for 
synchronization of two linear coupling chaotic systems. Li proved a negative definite 
symmetric matrix by the mathematical theory,and there were  negative eigenvalues 
in the matrix. By the asymptotically stable Error system, To derive a sufficient 
condition of coupled chaotic systems’ synchronization was gained. With the spectral 
lyapunov stability theory and linear matrix inequalities and Matlab Control System 
Toolbox, Park Calculated the solution of the optimal linear matrix inequalities and 
obtained the stability criterion of unified chaotic system’s gradual synchronization.  
  This paper considers two linear coupling Newton-Leipnik Chaotic Systems and 
the theory of linear time-varying continuous system stability. Without too 
cumbersome derivation of the mathematical theory, we can get to make two different 
initial value of chaotic systems achieve synchronization by a sufficient condition. 
There aren’t many constains in criterion expressions by comparing, and a broader 
range of coupling coefficient. This method is applied to the Newton-Leipnik Chaotic 
System, and satisfactory results were achieved. Thus the effectiveness and feasibility 
of the method wereconfirmed. 
 

2. System description and its basic properties 
 
The Newton-Leipnik chaotic system, derived in [1], is described by the following 

differential equation system 

10
0.4 5

5

x ax y yz
y x y xz
z bz xy

= − + +⎧
⎪ = − − +⎨
⎪ = −⎩

&

&

&

                                           (1) 

where x , y and z are the state variables, parameters a and b are the two positive real 

constants. 
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The divergence of this flow is given by 

0.4x y zV a b
x y z
∂ ∂ ∂

∇ ⋅ = + + = − − +
∂ ∂ ∂
& & &                                  (2) 

Obviously, the system is dissipative if 0.4 0a b− − + < . When 0.4a = and 0.175b = , 
the system converges to a set ofmeasure zero exponentially.In fact, for the initial 

conditions (5,1,20) , one can obtain a double strange attractor,the upper and the 

lower attractor, respectively (see Fig. 1). Therefore, this system has a attractor with 
parameters 0.4a =  and 0.175b = . 

 
Fig. 1. a attractor of the chaotic system with 0.4a = and 0.175b = . 

 

3. Linear coupled synchronization of Newton-Leipnik chaotic system 
 
3.1 Linear coupled Newton-Leipnik chaotic system 
  Consider the linear coupling of two identical Newton-Leipnik chaotic system: 
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2 1 2 1 3 2 2 2
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,                            (3) 

where , ( 1, 2,3)i ix y i = are the state variables,and ( 1,2,3)id i = are coupling 

coefficients to ensure that need to synchronize two chaotic systems. Here do not like 

the literature [10-12] in for 0id > limit. 

  Defined as shown in the error signal: 

1 1 1

2 2 2

3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

e t x t y t
e t x t y t
e t x t y t

= −⎧
⎪ = −⎨
⎪ = −⎩

                                           (4) 
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  Error system of equation (3) is  

1 1 2 2 3 3 2 1 1

2 1 2 1 3 3 1 2 2

3 1 1 2 2 1 3 3

10 10 2
0.4 5 5 2
5 5 2

e ae e x e y e d e
e e e x e y e d e
e be x e y e d e

= − + + + −⎧
⎪ = − − + + −⎨
⎪ = − − −⎩

&

&

&

.                            (5) 

The coefficient matrix of equations (6) is 

    
1 3 2

3 2 1

2 1 3

2 1 10 10
( ) 1 5 0.4 2 5

5 5 2

a d y x
J t y d x

b y x d

− − +⎛ ⎞
⎜ ⎟= − + − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

.                             (6) 

Obviously, just let the coupling coefficients satisfy certain conditions, and the 
error system (5) tends to infinity in time asymptotically stable. We can achieve 
synchronization of two coupled Newton-Leipnik chaotic systems of different initial 
conditions and same structures. 

As the error system is linear, and its coefficient matrix is time-varying, so by using 
stability theory of a continuous time-varying linear system, determine to make the 
error system (5) asymptotically stable, and the coupling coefficients must satisfy . 

Here the stability of linear time-varying continuous system theory is demonstrated. 
3.2 Stability theory of continuous time-varying linear system  

Consider the following form of third-order linear time-varying systems: 

    
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

x a t x a t x a t x
x a t x a t x a t x
x a t x a t x a t x

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

&

&

&

.                                (7) 

Assuming the coefficients ( )ija t are continuous and bounded, and set ( ) 0ija t a≤ − <  

( 1, 2,3)i = , 0t t∀ ≥ .The coefficient matrix ( )A t is divided into 2 × 2 blocks, as 

follows. 

11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

a t a t a t
A t a t a t a t

a t a t a t

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M

M

M

                                  (8) 

Let  { }
0

11 11 21 22 12sup ( ) ( ) , ( ) ( )
t t

b a t a t a t a t
≤ <+∞

= + + , 

{ }
0

12 13 23sup ( ) , ( )
t t

b a t a t
≤ <+∞

= , 

{ }
0

21 31 32sup ( ) , ( )
t t

b a t a t
≤ <+∞

= , 

{ }
0

22 33sup ( )
t t

b a t
≤ <+∞

= , 
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11 12

21 22

b b
B

b b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                               (9) 

Consider auxiliary equations:  
* * *

1 11 1 12 2V b V b V= + , 

* * *
2 21 1 22 2V b V b V= + .                                            (10) 

Theorem If the variable coefficient linear system (7) continuous and 

bounded, ( ) 0ija t <  ( 1, 2,3)i =  and these coefficients of its auxiliary equations (9) 

satisfy: 

  1) 11 0b β≤ − < , 22 0b β≤ − < ,β is a positive constant; 

2) All eigenvalues have negative real parts. 
The zero solution of the system (7) is asymptotically stable. 
3.3 Case analysis and numerical simulation 

By the stability theory of linear time-varying system, study stability of error 
system (5), and obtain range of the coupling coefficient. Then we give out a 
sufficient condition of the global incremental synchronization of two identical 
Newton-Leipnik chaotic systems. Finally, numerical simulation is given out. Above 
illustrate the correctly theoretical analysis.  

First, the error system corresponding to the symmetric matrix ( )J t  corresponds 

with time-varying matrix ( )A t , then get the following expression: 

{ }
0

11 1 3 2 3sup 2 1 5 , 0.4 2 1 10
t t

b a d y d y
≤ <+∞

= − − + − + − − + + , 

{ }
0

12 2 1sup 10 , 5
t t

b x x
≤ <+∞

= , 

{ }
0

21 2 1sup 5 , 5
t t

b b y x
≤ <+∞

= − − , 

{ }
0

22 3sup 2
t t

b d
≤ <+∞

= − . 

Based on the above stability of linear time-varying system theory, the error system 

(5) is global asymptotic stability, as long as inequality 11 22 11 22 21 120, 0,b b b b b b< < > ,  

12 21,b b are non-negative numbers, Apparently 12 21,b b is satisfied and a sufficient 

condition will be met as follows: 
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1 32 1 5 0,a d y− − + − + <  

2 30.4 2 1 10 0d y− − + + < , 

32 0d− < , 

( ) ( ) 2
1 3 32 1 5 2a d y d m− − + − + ⋅ − > , 

( ) ( ) 2
2 3 30.4 2 1 10 2d y d m− − + + ⋅ − > . 

Where 
1 2 2max( 5 , 10 , 5 )m x x b y= − . 

As the chaotic system is bounded, we can easily select the appropriate coupling 
coefficients to satisfy the above inequality. For initial values are different, the same 
structure of two Newton-Leipnik chaotic systems is global complete synchronization. 
  Fourth-order Runge-Kutta method for the simulation, set the initial 

value ( )1 2 3 1 2 3(0), (0), (0), (0), (0), (0)x x x y y y (1,5,5,1,2,0)= and simulation results are 

shown in Figure 2, where 1 2 31.3, 1.5, 0.4d d d= − = − = . 

  

 

Fig. 2. The time response of error states（ 1 2 3e e e， ， ）. 

The above is just sufficient condition of two linear coupling Newton-Leipnik 
chaotic systems' synchronization, and it means that some do not meet the conditions 
of the coupling coefficient, but also make a global gradual synchronization of 
Newton-Leipnik chaotic system. 
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Finally, sufficient condition of two Newton-Leipnik chaotic systems’ 

ynchronization is compared with these literatures [10-12]. First, theories and 
methods are not the same. Because the error system of two coupled chaotic systems 
synchronization is linear time-varying continuous system, which is used here to 
analyze its stability. The sufficient condition of two identical Newton-Leipnik 
chaotic systems for linear coupling, the method may be more reasonable than other 
methods, so that is to get a new sufficient condition for chaos synchronization. 
Second, these literatures [10-12] in the derivation of sufficient conditions of chaotic 
systems synchronization , these coupling coefficients are required these 

preconditions of 0( 1,2,3)id i> = , but here we does not require. For example, [11] 

requires 2 14d > , there is no need. Here the coupling coefficient id  is broader range 

of options. 
 

4. Conclusion 
 
In this paper, the linear coupling of the two unified chaotic systems were studied. 

By the stability theory of Linear time-varying continuous system, new progressive 
sufficient conditions of the global chaos synchronization have been obtained. By 
comparing with proposed several methods, we found that this mathod is not only 
simple, less constraints, lack of conservation, and a wider range of coupling 
coefficient. The method is applied to Newton-Leipnik chaotic system, two identical 
chaotic systems can quickly achieve the global incremental synchronization, and 
numerical simulations show the effectiveness and feasibility of the method. In 
addition, this analysis method was applied to other chaotic systems and control. This 
method has good universality, and it is worth further studying. 
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