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Abstract

In this paper, an efficient method based on Lagrange interpolation
is used for solving nonlinear Fredholm integral equations of the power
function type. For this purpose simple quadrature rules such as Trape-
zoidal and Simpson rules are used. However, numerical results with
good accuracy is obtained. The method is applied to some numerical
examples.
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1 Introduction

In this paper we present a numerical approach for solving nonlinear Fredholm
integral equations. Several numerical methods for approximating the solution
of linear and nonlinear integral equations and specially Hammerstein integral
equations are known [1-11]. The aim of this work is to present a numerical
method for approximating the solution of nonlinear Fredholm integeral equa-
tion of the second kind:

f(x) = g(x) +

∫ 1

0

k(x, t)[f(t)]mdt, m > 1, (1)

where, g ∈ L2[0, 1), k ∈ L2[0, 1)2 and f is the unknown function to be deter-
mined and m is a positive integer.
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2 Function Approximation

Lagrange interpolation of the function f(x) is given by

f(x) �
n∑

i=0

fiLi(x), (2)

with fi = f(xi) and

Li(x) =

n∏
j=0,j �=i

(
x − xj

xi − xj
),

also, Li(xj) = δij where δij is the Kronecker delta.
We can write (2) in the matrix form

f(x) � f tL(x), (3)

where, f = [f0, f1, . . . , fn]t and L(x) = [L0(x), L1(x), . . . , Ln(x)]t. Similarly,
k(x, t) ∈ L2[0, 1]2 may be approximated in the matrix form as:

k(x, t) � Lt(x)KL(t), (4)

where K = [kij]0≤i,j≤n and kij = k(xi, tj). For a positive integer m, [f(t)]m

may be approximated as:

[f(t)]m �
n∑

i=0

f̃iLi(t) = f̃ tL(t)

where f̃ is a column vector whose elements are nonlinear combinations of the
elements of the vector f . Now, we consider evaluation of f̃ in terms of f . Using
the subject already discussed in this section,

f(t) = f tL(t) and [f(t)]m = f̃ tL(t),

so,

f̃ tL(t) = [f tL(t)]m, (5)

if we choose t = xj , j = 0, 1, ..., n and using the fact that L(xj) = ej , where ej

is the j-th column of the identity matrix, equation (5) gives

f̃j = fmj ,

so, f̃ = [f̃0, f̃1, ..., f̃n] = [fm
0 , fm

1 , ..., fm
n ].
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3 Nonlinear Fredholm integral equations of power

function type

Now consider the nonlinear Fredholm integral equation of the second kind with
nonlinear regular part:

f(x) = g(x) +

∫ 1

0

k(x, t)[f(t)]mdt, m > 1, (6)

by approximating functions f(t), k(x, t) and [f(t)]m, as before, in the matrix
form we have:

f(t) � f tL(t) (7)

k(x, t) � Lt(x)KL(t) (8)

[f(t)]m � f̃ tL(t) (9)

by substituting the approximations (7)-(9) into (6) we obtain:

Lt(x)f = g(x) +

∫ 1

0

Lt(x)KL(t)Lt(t)f̃dt

= g(x) + Lt(x)K

∫ 1

0

L(t)Lt(t)dtf̃

= g(x) + Lt(x)KDf̃ (10)

where D =
∫ 1

0
L(t)Lt(t)dt, so, D is a (n + 1) × (n + 1) matrix with elements

Dij =
∫ 1

0
Li(t)Lj(t)dt, i, j = 0, 1, ..., n. Also, we approximate the integral of

f on [a, b] as:

∫ b

a

f(x)dx ≈
k∑

r=0

wrf(xr). (11)

In this work we consider the Trapezoidal and Simpson quadrature rules with
k = n. By approximating the integrals Dij with quadrature rule (11) we get

Dij ≈
n∑

r=0

wrLi(xr)Lj(xr)

=
n∑

r=0

wrδirδjr

=

{
0, i �= r or i �= r

wp, i = j = r = p, p = 0, 1, . . . , n
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therefore, D is a diagonal matrix:

D = Diag(w0, w1, ..., wn). (12)

By collocating (10) at the points x = xj , j = 0, 1, ..., n simply we get

fj = g(xj) + et
jKDf̃ , (13)

system (13) gives n + 1 nonlinear equations for fj, j = 0, 1, ..., n which can be
easily solved by Newton iterative method. Therefore, desired approximation
for f(t) can be obtained by (3) for every t ∈ [0, 1].

4 Numerical Examples

Now for implementing the presented method for solving nonlinear Fredholm
integral equation, we choose some numerical examples, for which the exact
solution is known for comparison with the approximate solution.

Example 1:

f(x) +

∫ 1

0

ex−2t[f(t)]3dt = ex+1, 0 ≤ x < 1,

with exact solution f(x) = ex.

Example 2:

f(x) −
∫ 1

0

xt[f(t)]3dt = ex − (1 + 2e3)x

9
, 0 ≤ x < 1,

with exact solution f(x) = ex.
Table 1 shows the computed error |e| = |uexact(x) − un(x)| for examples 1-2
with Trapezoidal quadrature rule and n=6.

Table 1
t Example 1 Example 2

0.0 6 × 10−4 0.0
0.1 7 × 10−4 4 × 10−3

0.2 7 × 10−4 9 × 10−3

0.3 8 × 10−4 1 × 10−2

0.4 9 × 10−4 1 × 10−2

0.5 1 × 10−3 2 × 10−2

0.6 1 × 10−3 2 × 10−2

0.7 1 × 10−3 3 × 10−2

0.8 1 × 10−3 3 × 10−2

0.9 1 × 10−3 4 × 10−2

1.0 1 × 10−3 4 × 10−2
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Table 2 shows the computed error |e| = |uexact(x) − un(x)| for examples 1-2
with Simpson quadrature rule and n=6.

Table 2
t Example 1 Example 2

0.0 1 × 10−6 0.0
0.1 1 × 10−6 1 × 10−4

0.2 1 × 10−6 2 × 10−4

0.3 1 × 10−6 3 × 10−4

0.4 1 × 10−6 4 × 10−4

0.5 1 × 10−6 5 × 10−4

0.6 2 × 10−6 6 × 10−4

0.7 2 × 10−6 8 × 10−4

0.8 2 × 10−6 9 × 10−4

0.9 2 × 10−6 1 × 10−3

1.0 3 × 10−6 1 × 10−3

Table 3 shows the computed error |e| = |uexact(x) − un(x)| for examples 1-2
with Trapezoidal quadrature rule and n=10.

Table 3
t Example 1 Example 2

0.0 2 × 10−4 0.0
0.1 2 × 10−4 1 × 10−3

0.2 2 × 10−4 3 × 10−3

0.3 3 × 10−4 5 × 10−3

0.4 3 × 10−4 6 × 10−3

0.5 3 × 10−4 8 × 10−3

0.6 4 × 10−4 1 × 10−2

0.7 4 × 10−4 1 × 10−2

0.8 5 × 10−4 1 × 10−2

0.9 5 × 10−4 1 × 10−2

1.0 6 × 10−4 1 × 10−2

Table 4 shows the computed error |e| = |uexact(x) − un(x)| for examples 1-2
with Simpson quadrature rule and n=10.

Table 4
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t Example 1 Example 2
0.0 1 × 10−7 0.0
0.1 1 × 10−7 1 × 10−5

0.2 1 × 10−7 3 × 10−5

0.3 2 × 10−7 4 × 10−5

0.4 2 × 10−7 6 × 10−5

0.5 2 × 10−7 7 × 10−5

0.6 2 × 10−7 9 × 10−5

0.7 3 × 10−7 1 × 10−4

0.8 3 × 10−7 1 × 10−4

0.9 3 × 10−7 1 × 10−4

1.0 4 × 10−7 1 × 10−4

5 Conclusion

In this paper, Lagrange functions and simple quadrature rules were used to
solve nonlinear integral equations of the power function type. The presented
approach leads to solve nonlinear system of equations which may easily be
solved by Newton iterative method. The advantages of presented method make
it very simple and cheap as computational point of view. Also, the accuracy
of the method may be increased by increasing n (the number of Lagrange
functions or quadrature nodes), furthermore we can increase accuracy of the
method by using more precise quadrature rules.
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