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Abstract

The generalized Broer-Kaup-Kupershmidt (generalized BKK) isospec-
tral problem, including the x-derivative of potential, is considered based
on Lie algebra A1. The variational trace identity is extended to con-
struct Hamiltonian structure of generalized BKK system. The Lie alge-
bra A1 is extended to the non-semi-simple Lie algebra of 4 × 4 matrix
form, from which a hierarchy of soliton equations related to general-
ized BKK system are given. The Hamiltonian structure of the resulting
system is established, by the generalized trace identity.
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1 Introduction

The theory of integrable Hamiltonian systems of infinite dimensions has un-

dergone a rapid development since the late 1960’s. The representation of a
nonlinear system as the compatibility condition of linear equations, i.e., the

zero-curvature representation, is central to our understanding of the word ”in-
tegrability”. Meanwhile, the role of Lie algebra has attracted much attention

[1-3], among of which the Lie algebra A1 has served as the ground in which
the principal elements of Lax and zero-curvature equations grow.

Let G be a finite dimensional Lie algebra over C, and G̃ be the correspond-
ing loop algebra G̃ = G ⊗ c[λ, λ−1]. We assume that a pair of matrix spectral

problems {
ϕx = Uϕ = U(u, λ)ϕ,

ϕt = V ϕ = V (u, ux, uxx, · · · , ∂m0u
∂xm0 ; λ)ϕ,

(1.1)
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where U, V ∈ G̃, u = (u1, u2, · · · , ul)
T are potential functions, λ is a spectral

parameter with λt = 0, m0 is a natural number indicating the differential

order, determines a Lax integrable equation [4-7]

ut = K(u), (1.2)

through the zero-curvature equation

Ut − Vx + [U, V ] = 0. (1.3)

The system (1.2) may be casted in the Hamiltonian form

ut = J
δH̃n

δu
, (1.4)

where J is a symplectic operator and {H̃n} are a sequence of scalar functions,

and δ
δu

stands for the variational derivatives [3] defined by

δ

δu
=
∑
n≥0

(−∂)n ∂

∂u(n)
,

(
∂ =

d

dx
, u(n) = ∂nu

)
. (1.5)

The variational trace identity,

δ

δu
〈V,

∂U

∂λ
〉 =

(
λ−ε ∂

∂λ
λε

)
〈V,

∂U

∂u
〉, (1.6)

that produces Hamiltonian structures of infinite dimensional integrable sys-

tems, has been established by Tu [3]. To some extent, the establishment of
trace identity has shed light on certain exchangeability of operations between

δ/δu and ∂/∂λ [3,8,9], i.e.,

δ

δu
〈V̄ ,

∂U

∂λ
〉 =

∂

∂λ
〈V̄ ,

∂U

∂u
〉,

where γ is a constant such that V̄ = λγV is again a solution of Vx = [U, V ].

By using of trace identity, quite a number of infinite-dimensional Liouville
integrable Hamiltonian systems are discussed. [4-7] Recently, a good deal

of original work on developing trace identities have been given to construct
Hamiltonian structures of integrable multi-component systems and integrable

couplings in cases of semi-simple and non-semi-simple Lie algebras, as well as
super integrable systems [10-14].

Generally, to the best of our knowledge, very few of the matrix eigenvalue
problems are involved with the x-derivatives of potentials, e.g.,{

ϕx = Uϕ = U(u, ux, uxx, · · · , ∂m1u
∂xm1 ; λ)ϕ,

ϕt = V ϕ = V (u, ux, uxx, · · · , ∂m2u
∂xm2 ; λ)ϕ,

(1.7)
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m1, m2 are natural numbers indicating the differential order. In such a case,
the variational trace identity (1.6) should be changed to [8,9]

δ

δu
〈V,

∂U

∂λ
〉 =

(
λ−ε ∂

∂λ
λε

)
〈V,

δU

δu
〉. (1.8)

For example, let U = U(u, ux, λ), V = V (u, ux, uxx, · · · , ∂m0u
∂xm0 ; λ) in (1.7), then,

from (1.5), the variational trace identity is casted into

δ

δu
〈V,

∂U

∂λ
〉 =

(
λ−ε ∂

∂λ
λε

)(
〈V,

∂U

∂u
〉 − ∂

∂x
〈V,

∂U

∂ux
〉
)

. (1.9)

This paper, based on the Lie algebra A1, is devoted to revisiting the gen-

eralized Broer-Kaup-Kupershmidt matrix eigenvalue problem [15]

ϕx = Uϕ =

(
λ + u v + αux

1 −λ − u

)
ϕ, ϕ =

(
ϕ1

ϕ2

)
, (1.10)

where the spectral matrix U depends not only on potentials u, v but also on the
x-derivative of potential u, α is a arbitrary constant. By constructing a proper

time evolution equation, a hierarchy of soliton equations are furnished. One
representative hierarchy of the resulting Lax integrable equations is presented

and shown to possess Hamiltonian structure based on the variational trace
identity (1.9). By using of semidirect sum of Lie algebras, a 4 × 4 matrix Lie

algebra is constructed, based on which a hierarchy of Lax integrable equations
are derived by zero-curvature representation. The Hamiltonian structure of the

enlarged system is constructed by using of generalized variational trace iden-

tity through a non-degenerate symmetric bilinear form. Then, we construct
infinitely many common commuting conserved functionals for the resulting

hierarchy.

2 The generalized BKK hierarchy and its Hamiltonian structure

The Lie algebra A1 is presented as [1-6]

A1 = span{w̄1, w̄2, w̄3, }, (2.1)

with

w̄1 =

(
1 0
0 −1

)
, w̄2 =

(
0 1
0 0

)
, w̄3 =

(
0 0
1 0

)
,

equipped with the commutative relations

[w̄1, w̄2] = 2w̄2, [w̄1, w̄3] = −2w̄3, [w̄2, w̄3] = w̄1. (2.2)
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Then, the associated loop Lie algebra may be defined by

Ã1 = {P |P ∈ R[λ] ⊗ A1},
where R[λ] ⊗ A1 means span{λnQ|n ∈ Z, Q ∈ A1}.

Based on loop Lie algebra Ã1, the generalized Broer-Kaup-Kupershmidt
spectral problem (1.10) is given by

ϕx = Uϕ, U = w̄1(1) + uw̄1(0) + (v + αux)w̄2(0) + w̄3(0), ϕ = (ϕ1, ϕ2)
T , (2.3)

where U = U(u, v, ux; λ), U = (u, v)T is potential function, λ is a spectral

parameter with λt = 0, and α is an arbitrary constant.
Consider the auxiliary spectral problem associated with (2.3)

ϕtm = Vmϕ, m ≥ 0, (2.4)

with

Vm =

m∑
j=0

(
aj bj

cj −aj

)
λm−j +

(−cm+1 0
0 cm+1

)
.

Then the Eqs. (2.4) yield

Vmx − [U, Vm] = −cm+1x
w̄1(0) + 2[bm+1 − (v + αux)cm+1]w̄2(0),

which is consistent with Utm . Then, the zero-curvature equations

Utm − Vmx + [U, Vm] = 0, m ≥ 0,

give rise to the following hierarchy of soliton equations

Utm = Km(U) =

(
u
v

)
tm

=

( −cm+1x

−2am+1x
+ αcm+1xx

)
, m ≥ 0. (2.5)

When m = 2, the soliton hierarchy (2.5) is reduced to the generalized BKK
equation ⎧⎨⎩

ut = −1−α
2

uxx + 1
2
vx − 2uux,

vt = α(2−α)
2

uxxx + 1−α
2

vxx − 2(uv)x,
d
dt

= d
dt2

.
(2.6)

In what follows, the trace identity (1.8), i.e., (1.9), [8,9] is used to construct
the Hamiltonian structure for the system (2.5). It is easy to see that

〈V,
∂U

∂λ
〉 = 2a, 〈V,

δU

δv
〉 = 〈V,

∂U

∂v
〉 = c,

〈V,
δU

δu
〉 = 〈V,

∂U

∂u
〉 − ∂

∂x
〈V,

∂U

∂ux

〉 = 2a − αcx.



Generalized Broer-Kaup-Kupershmidt system 3771

Substituting above expressions with

a =

∞∑
m=0

amλ−m, b =

∞∑
m=0

bmλ−m, c =

∞∑
m=0

cmλ−m,

into trace identity (1.8), and equating the coefficients of λ−m−1 on both sides
of (1.8) yield

δ

δU

∫
(2am+1)dx = (γ − m)

⎛⎝ 2am − αcmx

cm

⎞⎠ .

To fix the constant γ, we simply set m = 0, then, we have γ = 0. Therefor,

we obtain

δ

δU

∫ (
2am+1

m

)
dx =

⎛⎝ −2am + αcmx

−cm

⎞⎠ .

It is easy to verify that the system (2.5) is Liouville integrable and possess the

bi-Hamiltonian structure

Utm =

(
u
v

)
tm

= J
δH̃m

δU
= M

δH̃m−1

δU
, m ≥ 1. (2.7)

The Hamiltonian operators J, M and the Hamiltonian functionals H̃m are given

by

J =

(
0 ∂
∂ 0

)
, M =

(
1
2∂ α − 1

2 ∂2 − ∂u
1 − α

2 ∂2 − u∂ M22

)
, (2.8)

with

M22 = (α − α2

2
)∂3 + α(∂2u − u∂2) − (v + αux)∂ − ∂(v + αux),

and

H̃m =

∫
Hmdx =

∫
2am+1

m
dx, m ≥ 1, (2.9)

where [3,8,9]

δ

δU
=

(
δ

δU1
,

δ

δU2
, · · · , δ

δUl

)T

,
δH̃m

δUi
=
∑
m≥0

(−∂)m δHm

δUm
i

,

∂ =
d

dx
, Um

i = ∂mUi, i = 1, 2, · · · , l.



3772 Tao Chen, Li-Li Zhu and Lei Zhang

If we denote
δH̃m

δU
= Φ

δH̃m−1

δU
,

then, asking for the help of the recursion relation (2.7), we get the recursion

operator

Φ =

(
1
2∂ − ∂−1u∂ − 1

2α∂ α(1 − α
2 − ∂−1u)∂2 + α∂u − ∂−1(v + αux)∂ − (v + αux)

1
2

α
2 ∂ − 1

2∂ − u

)
.

(2.10)

Remark 1. As α = 0, the spectral problem (2.3) reduces to the Broer-Kaup-
Kupershmidt spectral problem [17]

ϕx = UBKK(U, λ)ϕ,

UBKK(U, λ) = w̄1(1) + uw̄1(0) + vw̄2(0) + w̄3(0),

and the soliton hierarchy (2.5) gives the well-known Broer-Kaup-Kupershmidt
soliton hierarchy

Utm =

(
u
v

)
tm

= JBKK
δH̃m

δU
= MBKK

δH̃m−1

δU
, m ≥ 1,

in which

JBKK =

(
0 ∂
∂ 0

)
, MBKK =

(
1
2∂ −1

2∂2 − ∂u
1
2∂2 − u∂ −v∂ − ∂v

)
,

and Hm, m ≥ 1 satisfy (2.9) as α = 0.
Remark 2. When α = 1 the spectral problem (2.3) reduces to the Boussinesq-

Burgers spectral problem. [15] The first nonlinear system of Boussinesq-
Burgers hierarchy is as follows{

ut = 1
2
vx − 2uux,

vt = 1
2
uxxx − 2(uv)x,

whose multi-soliton solutions are discussed by Darboux transformation. [16]

3 Hamiltonian extension of the generalized BKK soliton hierar-
chy (2.9)

With the development of the soliton theory, integrable coupling [18] has become

a new and important topic in the study of integrable systems. The concept of
integrable couplings and related theories were brought forward in recent years

(see e.g., Refs. [10,11,19-27] and references therein). The corresponding results
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show various mathematical structures that integrable equations possess, such
as Lax representations, infinitely many symmetries, conserved quantities and

bi-Hamiltonian structures, etc.

In Refs. [10,11,22,23], by considering semi-direct sum of Lie algebras, a
technologically-practicable approach to derive integrable and nonlinear inte-

grable couplings is proposed. In order to construct the Hamiltonian structures
of the corresponding integrable coupling systems, in the case of non-semi-

simple Lie algebras, a generalized trace identity is established [10,11,22,23],
which undoes the constraint on the standard trace identity [3,8,9].

Let us first consider the extension of the Lie algebra A1 into Lie algebra of
4 × 4 matrix by semidirect sum of Lie algebras. Note

F = span{w1, w2, w3, w4, w5, w6}, F0 = span{w1, w2, w3}, Fc = span{w4, w5, w6},
with

w1 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ , w2 =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ , w3 =

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠ ,

w4 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , w5 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , w6 =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ .

It is easy to verify that F, F0, Fc construct three Lie algebras with the commu-

nication operation

[wi, wj] = wiwj − wjwi, (i, j = 1, 2, ..., 6),

and

F = F0 � Fc, [F, Fc] = {AB − BA|A ∈ F, B ∈ Fc} ⊆ Fc.

Note

F̃ = {A|A ∈ R[λ] ⊗ F}, F̃0 = {A|A ∈ R[λ] ⊗ F0}, F̃c = {A|A ∈ R[λ] ⊗ Fc},
where R[λ] ⊗ F means the loop algebra defined by span{λnA|n ≥ 0, A ∈ F}.
Obviously, F̃c is an Abelian ideal of the loop Lie algebra F̃ , and F̃0 and F̃c is

closed under the multiplication of matrix. Thus, F̃ forms a semi-direct sum of
F̃0 and F̃c.

In terms of F̃ , the spectral matrix W is of the form

W =

(W0 Wc

0 W0

)
∈ F̃ ,
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where W0,Wc are 2 × 2 matrices, 0 stands for a 2 × 2 zero matrix. For
generalized BKK hierarchy (2.5), we consider an isospectral problem

ϕ̄x = Ū(Ū, λ)ϕ̄ =

(
U Uc

0 U

)
ϕ̄, ϕ̄ =

⎛⎜⎜⎝
ϕ̄1

ϕ̄2

ϕ̄3

ϕ̄4

⎞⎟⎟⎠ , (3.1)

where U is defied by (2.3) and Uc =

(
r s + αrx

0 −r

)
, i.e.,

Ū(Ū, λ) = w1(1) +uw1(0) + (v +αux)w2(0) +w3(0) + rw4(0) + (s+αrx)w5(0).

The stationary zero-curvature equation

V̄x − [Ū , V̄ ] = 0, (3.2)

with

V̄ =

(
V Vc

0 V

)
= aw1(0) + bw2(0) + cw3(0) + ew4(0) + fw5(0) + gw6(0) ∈ F̃ ,

leads to⎧⎨⎩
ax = (v + αux)c − b, bx = 2(λ + u)b − 2(v + αux)a,
cx = −2(λ + u)c + 2a, ex = (v + αux)g + (s + αrx)c − f,
fx = 2(λ + u)f − 2(v + αux)e + 2rb − 2(s + αrx)a, gx = −2(λ + u)g + 2e − 2rc.

(3.3)

Upon setting

V̄ =
∑
j≥0

V̄jλ
−j =

∑
j≥0

(
Vj Vcj

0 Vj

)
λ−j

=
∑
j≥0

(ajw1(j) + bjw2(j) + cjw3(j) + ejw4(j) + fjw5(j) + gjw6(j)) ∈ F̃ ,

and choosing the initial data

a0 = e0 = 1, b0 = c0 = f0 = g0 = 0,
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then, Eqs (3.3) give rise to the following recursion relations

aj+1 = ∂−1[−1
2
(v + αux)cjx − 1

2
bjx − uajx], j ≥ 0,

bj+1 = 1
2
bjx − ubj + (v + αux)aj, j ≥ 0,

cj+1 = −1
2
cjx − ucj + aj, j ≥ 0,

ej+1 = ∂−1[−1
2
(v + αux)gjx − 1

2
(s + αrx)cjx − 1

2
fjx − rajx − uejx], j ≥ 0,

fj+1 = 1
2
fjx − ufj + (v + αux)ej − rbj + (s + αrx)aj , j ≥ 0,

gj+1 = −1
2
gjx − ugj + ej − rcj, j ≥ 0.

(3.4)

Assume that the constants of integration are selected to be zero. Then the

recursion relations (3.4) uniquely determine a series of sets of differential poly-
nomial functions in Ū with respect to x. The first few are listed as follows

a1 = e1 = 1, b1 = v + αux, c1 = 1, f1 = v + αux + s + αrx, g1 = 1,

a2 = −1
2
(v + αux), b2 = 1

2
(v + αux)x − u(v + αux),

c2 = −u, e2 = −1
2
(v + αux + s + αrx), g2 = −u − r,

f2 = 1
2
(v + αux + s + αrx)x − u(v + αux + s + αrx) − r(v + αux), · · ·

Let the time evolution of the eigenfunction of the spectral problem (3.1) obey
the differential equations

ϕ̄tm = V̄mϕ̄, m ≥ 0, (3.5)

where

V̄m =

m∑
j=0

(
Vj Vcj

0 Vj

)
λm−j +

(
Δm Δcm

0 Δm

)

=
m∑

j=0

[ajw1(m − j) + bjw2(m − j) + cjw3(m − j) + ejw4(m − j) + fjw5(m − j)

+gjw6(m − j)] − cm+1w1(0) − gm+1w4(0).

A direct computation gives

V̄mx − [Ū , V̄m] = −cm+1x
w1(0) + 2[bm+1 − (v + αux)cm+1]w2(0)

−gm+1x
w4(0) + 2[fm+1 − (v + αux)gm+1 − (s + αrx)cm+1]w5(0),
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which is consistent with Ūtm . Then the compatibility condition of (3.1) and
(3.5), i.e., the enlarged zero-curvature equations [3,10,11,21]

Ūtm = (V̄m)x − [Ū , V̄m], m ≥ 0,

give rise to the following equations

Ūtm = Km(Ū) =

⎛⎜⎜⎝
u
v
r
s

⎞⎟⎟⎠
tm

=

⎛⎜⎜⎝
−cm+1x

−2am+1x
+ α(cm+1)xx

−gm+1x

−2em+1x
+ α(gm+1)xx

⎞⎟⎟⎠ , m ≥ 0. (3.6)

The first nontrivial equation, when m = 2, gives

Ūt2 = K2(Ū) =

⎛⎜⎜⎝
α−1

2
uxx + 1

2
vx − 2uux

α(2−α)
2

uxxx + 1−α
2

vxx − 2(uv)x
α−1

2
(u + r)xx + 1

2
(v + s)x − 2uux − 2(ur)x

α(2−α)
2

(u + r)xxx + 1−α
2

(v + s)xx − 2(uv + us + vr)x

⎞⎟⎟⎠ .

The first two members in above system are same as those in (2.6), hence, it is a
kind of integrable coupling system of equation (2.6), and, the system (3.6) is the

integrable coupling system of generalized Broer-Kaup-Kupershmidts hierarchy
(2.5). Further, the integrable couplings of Broer-Kaup-Kupershmidts [27] and

Boussinesq-Burgers equations are given by⎧⎪⎪⎨⎪⎪⎩
ut = −1

2
uxx + 1

2
vx − 2uux,

vt = 1
2
vxx − 2(uv)x,

rt = −1
2
(u + r)xx + 1

2
(v + s)x − 2uux − 2(ur)x,

st = 1
2
(v + s)xx − 2(uv + us + vr)x,

when α = 0 and ⎧⎪⎪⎨⎪⎪⎩
ut = 1

2
vx − 2uux,

vt = 1
2
uxxx − 2(uv)x,

rt = 1
2
(v + s)x − 2uux − 2(ur)x,

st = 1
2
(u + r)xxx − 2(uv + us + vr)x,

when α = 1, respectively.
In what follows, we are going to construct the Hamiltonian structure of

the system (3.6). In order to do so, we should introduce a non-degenerate
symmetric bilinear form. Let us consider the following map [10,11,21,27]

Ω : F̃ → R6, A 
→ a = (a1, a2, a3, a4, a5, a6)
T , A =

⎛⎜⎜⎝
a1 a2 a4 a5

a3 −a1 a6 −a4

0 0 a1 a2

0 0 a3 −a1

⎞⎟⎟⎠ ∈ F̃ ,

(3.7)
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which induces a Lie algebraic structure on R6, and, is isomorphic to the matrix
loop algebra F̃ . The commutator [., .]R6 on R6 is derived by the commutator

[., .]
�F on F̃ ,

[a, b]TR6 = Ω([A,B]T
�F
) = aT R(b),

where a, b ∈ R6, A, B ∈ F̃ , R(b) is a square matrix

R(b) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 2b2 −2b3 0 2b5 −2b6

b3 −2b1 0 b6 −2b4 0
−b2 0 2b1 −b5 0 2b4

0 0 0 0 2b2 −2b3

0 0 0 b3 −2b1 0
0 0 0 −b2 0 2b1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is in fact defined by communication operation in F̃ [10,11]. According
to [10,11], we introduce the matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝

2 0 0 2 0 0
0 0 1 0 0 1
0 1 0 0 1 0
2 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is easy to verified that

HT = H, h(R(b))T = −R(b)H, b ∈ R6.

Therefor, we can define a non-degenerate symmetric bilinear form on R6

〈a, b〉 = aT Hb. (3.8)

Then, from (3.7) and (3.8), a non-degenerate bilinear form on F̃ is given by

〈A, B〉
�F = 〈Ω(A), Ω(B)〉R6 = (a1, a2, a3, a4, a5, a6)H(b1, b2, b3, b4, b5, b6)

T

= 2a1b1 + 2a1b4 + a2b3 + a2b6 + a3b2 + a3b5 + 2a4b1 + a5b3 + a6b2,
(3.9)

which is symmetric and invariant associated with the Lie product, i.e.,

〈A, B〉
�F = 〈B, A〉

�F , 〈A, [B, C]〉
�F = 〈[A, B], C〉

�F , A, B, C ∈ F̃ .

Through a direct computation, by utilizing (3.9) and (1.5), we have

〈V̄ , ∂Ū
∂λ

〉
�F = 2a + 2e, 〈V̄ , δŪ

δv
〉
�F = 〈V̄ , ∂Ū

∂v
〉
�F = c + g,

〈V̄ , δŪ
δu

〉
�F = 〈V̄ , ∂Ū

∂u
〉 − ∂

∂x
〈V̄ , ∂Ū

∂ux
〉
�F = 2(a + e) − α(c + g)x,

〈V̄ , δŪ
δr

〉
�F = 〈V̄ , ∂Ū

∂r
〉 − ∂

∂x
〈V̄ , ∂Ū

∂rx
〉
�F = 2a − αcx,

〈V̄ , δŪ
δs

〉
�F = 〈V̄ , ∂Ū

∂s
〉
�F = c.

(3.10)
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The substitution of (3.10) with

a =

∞∑
j=0

ajλ
−j, b =

∞∑
j=0

bjλ
−j, c =

∞∑
j=0

cjλ
−j,

e =
∞∑

j=0

ejλ
−j , f =

∞∑
j=0

fjλ
−j , g =

∞∑
j=0

gjλ
−j,

into the generalized trace identity [8,9,10,11]

δ

δŪ

∫
〈V̄ ,

∂Ū

∂λ
〉
�Fdx =

(
λ−γ ∂

∂λ
λγ

)
〈V̄ ,

δŪ

δŪ
〉
�F , (3.11)

and equating the coefficients of λ−m−1 on both sides of (3.11) yield

δ

δŪ

∫
2(am+1 + em+1)dx = (γ − m)

⎛⎜⎜⎝
2(am + em) − α(cm + gm)x

cm + gm

2am − αcmx

cm

⎞⎟⎟⎠ .

To fix the constant γ, we simply set m = 0, then, we have γ = 0. Hence, we

could construct the Hamiltonian structure of the system (3.6) by

Ūtm = Km(Ū) =

⎛⎜⎜⎝
u
v
r
s

⎞⎟⎟⎠
tm

= J̄
δ ˜̄H
δŪ

, m ≥ 1, (3.12)

in which the Hamiltonian operators J̄ and the Hamiltonian functionals ˜̄Hm

are given by

J̄ =

⎛⎜⎜⎝
0 0 0 ∂
0 0 ∂ 0
0 ∂ 0 −∂
∂ 0 −∂ 0

⎞⎟⎟⎠ =

(
0 J
J −J

)
,

˜̄Hm =

∫
2(am+1 + em+1)

m + 1
dx, m ≥ 0,

and, J is defined by (2.12). Now, if we set

δ ˜̄Hm+1

δŪ
= Φ̄

δ ˜̄Hm

δŪ
,

by utilizing the recursion relations (3.4), we get

Φ̄ =

(
Φ Φc

0 Φ

)
,
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where Φ is defined by Eq. (2.14), 0 stands for 2 × 2 zero matrix, and

Φc =

(−∂−1r∂ α∂r − α∂−1r∂2 − ∂−1(s + αrx)∂ − (s + αrx)
0 −r

)
.

It is easy to verify that

M̄ = J̄Φ̄ =

(
0 M
M Mc

)
,

is a skew-symmetric operator, in which M is given by (2.12), and

Mc =

(
M11

c M12
c

M21
c M22

c

)
,

with

M11
c = −1

2
∂, M12

c = −∂r +
1 − α

2
∂2 + ∂u, M21

c = −r∂ +
α − 1

2
∂2 + u∂,

M22
c = α(∂2r − r∂2) − [(s + rx)∂ + ∂(s + rx)] + (

α2

2
− α)∂3 + α(u∂2 − ∂2u)

+(v + ux)∂ + ∂(v + ux).
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