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1. INTRODUCTION

Let X and Yj be Hilbert spaces with scalar product and norm of X denoted
by the symbols 〈., .〉X and ‖.‖X , respectively. Let Aj , j = 1, ..., N, be N linear
bounded mappings from X into Yj.

Consider the following problem: find an element x̃ ∈ X such that

Ajx̃ = fj, ∀j = 1, ..., N, (1.1)

where fj is given in Yj a priori. Set

Sj = {x ∈ X : Ajx = fj}, j = 1, ..., N, and S = ∩N
j=1Sj.

Here, we assume that S �= ∅. From the properties of Aj it is easy to see that
each set Sj is a closed convex set in X. Therefore, S is also a closed convex
subset in X.

1This work was supported by the Vietnamese National Foundation of Science and Tech-
nology Development.
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We are specially interested in the situation where the data fj is not exactly

known, i.e., we have only an approximation f
δj

j of the data fj satisfying

‖fj − f
δj

j ‖Yj
≤ δj, δj → 0, j = 1, ..., N. (1.2)

With the above conditions on Aj , each j-equation in (1.1) is ill-posed. By this
we mean that the solution set Sj does not depend continuously on the data
fj . Therefore, to find a solution of each j-equation in (1.1) one has to use
stable methods. One of those methods is the variational variant of Tikhonov’s
regularization that consists of minimizing the functional

‖Ajx − f
δj

j ‖2
Yj

+ α‖x − x∗‖2
X , (1.3)

where x∗ is some element in X \ Sj , and chosing a value of the regularization
parameter α = α(δ1, · · ·δN) > 0. It proved in [1] that each j-minimization

problem of (1.3) has unique solution x
αδj

j , and if δ2
j /α, α → 0 then {xαδj

j }
converges to a solution x̃j satisfying

‖x̃j − x∗‖X = min
x∈Sj

‖x − x∗‖X , j = 1, ..., N.

Our problem: find x
δj
α such that x

δj
α → x̃ as δj , α → 0, a relation α =

α(δ1, · · ·δN) such that x
δj

α(δ1 ,···δN) → x̃ as δj → 0, and finally estimate the

value ‖xδj

α(δ1,···δN) − x̃‖ where x̃ is a x∗-minimal norm element in S (x∗−MNS).

Burger and Kaltenbacher [2] used the Newton-Kaczmarz method cyclically
for regularizing each separate equation in (1.1) under a source condition on
each mapping Aj . The Steepest-Descent-Kaczmarz method is used cyclically
by Haltmeier, Kowar, Leitão, and Scherzerfor [3] for regularizing each separate
equation in (1.1) under a local tangential cone condition on each mapping Aj.

Note that the system of equations (1.1) can be written in the form

Ax = f, (1.4)

where A : X → Y := Y1 × ... × YN by Ax := (A1x, ..., ANx), and f :=
(f1, ..., fN). Very recently, Halmeier, Leitão and Scherzer [4] considered the
Landweber-Kaczmarz method to solve (1.4) under a local tangential cone con-
dition also on each mapping Aj . Equation (1.4) can be seen as a special case
of (1.1) with N = 1. Howerver, one potential advantage of (1.1) over (1.4)
can be that it might better reflect the structure of the underlying information
(f1, ..., fN) leading to the couplet system, than a plain concantenation into one
single data element f could.

In [5], for finding a common zero for a finite family of potential hemicon-
tinuous monotone mappings from a reflexive Banach space E into E∗, the
adjoint of E, the first author proposed a regularization method by solving the
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following regularized equation

N∑
j=0

αμjAj(x) + αU(x) = θ,

μ0 = 0 < μj < μj+1 < 1, j = 1, 2, ..., N − 1,

(1.5)

where U is a normalized duality mapping of E and estimated convergence
rate of the regularized solution under a smooth condition only for one A1, i.e.,
A′

1(x̃)∗z = U(x0), for some element z ∈ E.
In this paper, to solve (1.1), we consider a new regularization method based

on the following unconstrained optimization problem:

min
x∈X

N∑
j=1

‖Ajx − f
δj

j ‖2
Yj

+ α‖x − x∗‖2
X . (1.6)

We shall show convergence rate of regularized solution in (1.6) under a source
condition only on A1 in the next section. In section 3, we give an example
showing that problem (1.4), perhaps, is well-posed, although each equation in
(1.1) is ill-posed. So, the cyclical regularization for each separate equation in
(1.1) as in [2] and [3] is dispensable. Moreover, it does not exploir the well-
posed property of the given system of equations. Meantime, our method (1.6)
still uses the property.

Above and below, the symbols ⇀ and → denote the weak convergence and
convergence in norm, respectively, and a ∼ b is meant a = O(b) and b = O(a).

2. MAIN RESULTS

Under the assumptions on Aj it can be easy to show that problem (1.6)
admits a unique solution. We shall first address two questions. Is the problem
(1.6) stable in the sense of continuous dependence of the solution on the data

f
δj

j ? Secondly, do the solutions of (1.6) converge toward a solution of (1.1) as
α, δj → 0. In [6], stability has been proved for the case N = 1. For the conve-
nience of the reader, we provide the whole argument in the case of arbitrary
N ≥ 1.

Theorem 2.1. Let α > 0, f
δjk

j → f
δj

j with δj ≥ 0, as k → ∞, and xk be

a minimizer of (1.6) with f
δj

j replaced by f
δjk

j . Then the sequence of {xk}
converges to a minimizer of (1.6).

Proof. Obviously, xδ
α is a solution of (1.6) if and only if it is a solution of the

following equation

Bx + α(x − x∗) = f̃δ, (2.1)

where

B =
N∑

i=1

A∗
jAj and f̃δ =

N∑
i=1

A∗
jf

δj

j ,
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where A∗
j denotes the adjoint mapping of Aj. Obviously, if f

δjk

j → f
δjk

j then

f̃k
δ =

N∑
i=1

A∗
jf

δjk
j → f̃δ =

N∑
i=1

A∗
jf

δj

j

as k → ∞. Denote by xδk
α the solution of the following equation

Bx + α(x − x∗) = f̃k
δ , f̃k

δ =
N∑

i=1

A∗
jf

δjk
j . (2.2)

From (2.1), (2.2) and the monotone property of the mapping B it implies that

‖xδk
α − xδ

α‖X ≤ ‖f̃k
δ − f̃δ‖X/α,

for each α > 0. This together with f̃k
δ → f̃δ follows that xδk

α → xδ
α as k → ∞.

Theorem is proved.

Further, without loss of generality, assume that δj = δ, δ → 0.

Theorem 2.2. Let α(δ) be such that α(δ) → 0, δ/α(δ) → 0 as δ → 0. Then
the sequence {xδ

α}, where δ → 0, α = α(δ) and xδ
α is a solution of (1.6),

converges to an x∗-MNS x̃ of (1.1).

Proof. Clearly, we have, for each y ∈ S, that

By = f̃ , f̃ =

N∑
i=1

A∗
jfj. (2.3)

So, from (2.1) and (2.3), we obtain that

〈Bxδ
α − By, xδ

α − y〉 + α〈xδ
α − x∗, xδ

α − y〉 = 〈f̃δ − f̃ , xδ
α − y〉.

This together with the nonegative property of B implies that

‖xδ
α − y‖X ≤ ‖x∗ − y‖X +

N∑
j=1

‖A∗
j‖(Y ∗

j →X)
δ

α
∀y ∈ S. (2.4)

Since Aj are the bounded linear mappings and δ/α(δ) → 0, the sequence

{xδ
α(δ)} is bounded. Then, there exists a subsequence {xk := xδk

α(δk)} of the

sequence {xδ
α(δ)} converging weakly to some element x̃ ∈ H as k → ∞. Now,

we shall prove that x̃ ∈ S. Indeed, from (1.6) we can obtain the following
inequalities

‖Alxk − f δk
l ‖2

Yl
≤

N∑
j=1

‖Ajxk − f δk
j ‖2

Yj

≤
N∑

j=1

‖Ajy − f δk
j ‖Yj

+ α(δk)‖y − x∗‖2
X

≤ Nδ2
k + α(δk)‖y − x∗‖2

X ,
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for any y ∈ S and l = 1, ..., N . Since each functional ‖Alx − f δk
l ‖2 is weakly

lower semicontinuous in x [7], xk ⇀ x̃ and δk, α(δk) → 0 as k → ∞, we obtain
from the last inequality that Alx̃ = fl, l = 1, ..., N. So, x̃ ∈ S. Now, from (2.4),
δ/α(δ) → 0, as δ → 0, the weakly lower semicontinuity of norm and that any
closed convex subset in H has only one x∗-MNS, it follows that xδ

α(δ) → x̃ as
δ → 0. This completes the proof.

Theorem 2.3. Assume that there exists ω ∈ Y1 such that x̃−x∗ = A∗
1ω. Then

for the choice α ∼ δp, 0 < p < 1, we obtain

‖xδ
α(δ) − x̃‖X = O(δp/2).

Proof. Using (1.6) with x = x̃ and δj = δ for all j = 1, ..., N , we obtain

N∑
j=1

‖Ajx
δ
α(δ) − f δ

j ‖2
Yj

+ α(δ)‖xδ
α(δ) − x∗‖2

X

≤
N∑

j=1

‖Aj x̃ − f δ
j ‖2

Yj
+ α(δ)‖x̃ − x∗‖2

X .

So, we have that

N∑
j=1

‖Ajx
δ
α(δ)) − f δ

j ‖2
Yj

+ α(δ)‖xδ
α(δ) − x̃‖2

X ≤ Nδ2

+ α(δ)(‖x̃ − x∗‖2
X − ‖xδ

α(δ) − x∗‖2
X + ‖xδ

α(δ) − x̃‖2
X).

Since

‖x̃ − x∗‖2
X − ‖xδ

α(δ) − x∗‖2
X + ‖xδ

α(δ) − x̃‖2
X = 2〈x̃ − x∗, x̃ − xδ

α(δ)〉
we obtain that

‖A1x
δ
α(δ) − f δ

1‖2
Y1

+ α(δ)‖xδ
α(δ) − x̃‖2

X ≤ Nδ2

+ 2α(δ)〈ω, A1(x̃ − xδ
α(δ))〉

≤ Nδ2 + 2α(δ)〈ω, f1 − f δ
1 + f δ

1 − A1x
δ
α(δ)〉

≤ Nδ2 + 2α(δ)‖ω‖Y1(δ + ‖A1x
δ
α(δ) − f δ

1‖Y1).

(2.5)

Therefore,

‖A1x
δ
α(δ) − f δ

1‖2
Y1

+ α(δ)‖xδ
α(δ) − x̃‖2

X ≤ Nδ2

+ 2α(δ)‖ω‖Y1δ + 2α(δ)‖ω‖Y1‖A1x
δ
α(δ) − f δ

1‖Y1 .
(2.6)

This together with the implication

(a, b, c ≥ 0, a2 ≤ ab + c2) ⇒ a ≤ b + c
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implies

‖A1x
δ
α(δ) − f δ

1‖Y1 ≤
[
Nδ2 + 2‖ω‖Y1α(δ)δ

]1/2

+2‖ω‖Y1α(δ)

and hence

‖xδ
α(δ) − x̃‖X = O(δp/2),

if α(δ) ∼ δp, 0 < p < 1.

3. NUMERICAL EXAMPLES

For illustration, we consider the following problem of finding a common
solution of two systems of linear algebraic equations

Ajx = fj, j = 1, 2, (3.1)

where

A1 =

⎡
⎣1 2 −1

2 0 1
3 2 0

⎤
⎦ , A2 =

⎡
⎣ 1 −2 −1
−2 1 0
−1 −1 −1

⎤
⎦ , f1 =

⎡
⎣2

3
5

⎤
⎦ , f2 =

⎡
⎣−2
−1
−3

⎤
⎦ .

It is easy to verify that system (3.1) possesses a unique common solution
x̃ = (1; 1; 1). Since det A1 = det A2 = 0, each equation in (3.1) is ill-posed.
Based on the results in section 2, the common solution of (3.1) can be found
by solving the following optimization problem

min
x∈R3

‖A1x − f1‖2 + ‖A2x − f2‖2 + α‖x − x∗‖2, (3.2)

where ‖x‖ =
√

x2
i + x2

2 + x2
3 for every x = (x1; x2; x3) ∈ R3. It is not difficult

to verify that (3.2) is equivalent to the following equation

Bx + α(x − x∗) = f̃ , (3.3)

where

B = A∗
1A1 + A∗

2A2 =

⎡
⎣20 5 1

5 14 1
1 1 4

⎤
⎦ , f̃ = A∗

1f1 + A∗
2f2 =

⎡
⎣26

20
6

⎤
⎦ ,

and x∗ is any vector in R3. Since det B = 996 and (3.3) can be considered as a

regularization equation for the well-posed equation Bx = f̃ , we can use Jacoby
or Gauss-Seidel iteration methods for finding a unique solution xα of (3.3). The
following table 1 shows the calculation results for the approximation solution
xα = (xα

1 ; xα
2 ; xα

3 ) at 15th iteration with the started point x0 = (2, 2, 2).

• Table 1. 15th approximation solution with started point x0 = (2; 2; 2).
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α xα
1 xα

2 xα
3 ‖x̃ − xα‖

0.1000 0.9973 0.9955 0.9974 0.0232
0.0100 0.9997 0.9995 0.9977 0.0024
0.0010 1.000 1.0000 0.9998 0.0002
0.0001 1.0000 1.0000 1.0000 0.0000

Now, we give another example with det B = 0. We consider the case that

A1 =

⎡
⎢⎢⎣

0.1 −0.2 0.1 −0.1
0.2 −0.1 0.0 0.2
0.3 −0.3 0.1 0.1
0.1 0.1 −0.1 0.3

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

0.1 0.2 −0.1 0.1
0.2 −0.1 0.0 0.2
0.0 0.3 −0.2 0.4
−0.1 0.5 −0.3 0.5

⎤
⎥⎥⎦ ,

and

f1 =

⎡
⎢⎢⎣
−0.1
0.3
0.2
0.4

⎤
⎥⎥⎦ , f2 =

⎡
⎢⎢⎣

0.3
0.3
0.5
0.6

⎤
⎥⎥⎦ .

Then,

B =

⎡
⎢⎢⎣

0.21 −0.17 0.05 0.09
−0.17 0.54 −0.29 0.37
0.05 −0.29 0.17 −0.27
0.09 0.37 −0.27 0.61

⎤
⎥⎥⎦ , f̃ =

⎡
⎢⎢⎣

0.18
0.45
−0.34
0.80

⎤
⎥⎥⎦ .

Since the rank of the matrix B = 3, it is not difficult to verify that the set of
common solutions of (3.1) is a line passed through two points x̃ = (1; 1; 1; 1)
and x′ = (1; 3; 6; 2). So, the solution of minimal norm is the vector x̃ =
(1; 7/15;−1/3; 11/15) ≈ (1; 0.466667;−0.333333; 0.733333).

Table 2 shows our calculation result with δ = 10−n. To solve regularized
equation (3.3) with f̃ replaced by f̃δ we use the iterative regularization [8]

x(k+1) = x(k) − αk(Bx(k) + εk(x
(k) − x(0)) − f̃δ), x

(0) ∈ R4 any vector,

with the stopping rule in [9]:

‖Bx(K) − f̃δ‖2 ≤ τδ < ‖Bx(k) − f̃δ‖2, τ > 1,

for all k = 1, ..., K − 1 and every fixed δ. In our example, we have that L =
‖B‖ = 1.1847. We chose ε0 = 0.1 and εk+1 = εk/(1 + ε3

k). Then, the sequence
{εk} satisfies the conditions: εk > 0, εk ↘ 0 and (εk − εk+1)/(ε3

kεk+1) = 1 and
λ = (ε0 + L2)/2 = 0.7068. By taking αk = cεk with c = 1/(2λ) = 0.7075 we
have that (1− cλ)cε2

0 = 0.0035 < 1. Clearly, condition (2.6) in [8] is equivalent
to

τ ≥
(√

‖x̃ − x(0)‖[(1 + ε3
0)(1 + ε2

0) + 2ε0]

(1 − cλ − 2(ε0/c))ε0
+ 1

)2

.

Therefore, with x(0) = (0; 0; 0; 0), we obtain that ‖x̃ − x(0)‖ = ‖x̃‖ = 1.3663,
and hence τ ≥ 94.5933.
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• Table 2. Approximation solutions with started point x(0) = (0; 0; 0; 0), τ =
100 and δ = 10−n, n = 1, 2, · · ·

n K x
(K)
1 x

(K)
2 x

(K)
3 x

(K)
4 ‖B − f̃δ‖ τδ

1 0 0 0 0 0 1.1857 10
2 1 0.01337 0.03212 -0.02441 0.05780 0.94057 1
3 19 0.02337 0.25683 -0.22184 0.59552 0.31553 0.1
4 123 0.47880 0.21716 -0.25959 0.86361 0.09222 0.01
5 17452 0.70121 0.29095 -0.28953 0.86577 0.03162 0.001
6 694405 0.85935 0.37766 -0.31246 0.80696 0.00999 0.0001
7 24868554 0.94756 0.43269 -0.32551 0.76217 0.00316 0.00001
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