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Abstract
We consider probability measures µn, µ on a metric space X such

that µn weakly converges to µ. The following convergence

lim
n→∞

∫
X

fn(x)µn(dx) =
∫

X
f(x)µ(dx)

is proved under some restrictions on real valued functions fn and f
which are measurable, not necessarily continuous nor bounded.

Mathematics Subject Classification: 60F05

Keywords: weak convergence; integral convergence

1 Introduction

Recall that a sequence of probability measures {μn, n = 1, 2, · · · } on a σ-
algebra BX of Borel subsets of metric space X weakly converges to a probability
measure μ on BX if for any bounded continuous function f on X,

lim
n→∞

∫
X

f(x)μn(dx) =

∫
X

f(x)μ(dx).

It is often that we need to deal with the following convergence

lim
n→∞

∫
X

fn(x)μn(dx) =

∫
X

f(x)μ(dx), (1)

for some fn and f. Limit (1) can be trivially derived if fn uniformly converges
to f on whole X. But the condition that uniform convergence of fn to f on
whole space X is so strong that it can be hardly applied.

This short note presents several criterions for (1) in which uniform con-
vergence of fn to f is assumed only on every compact (or bounded) subset
of X (see Theorem 2.2 and Theorem 2.1). Section 2 also gives a theorem for
which (1) holds where a condition μ(E) = 0 is assumed instead of uniform
convergence of fn to f. The proofs are shown in section 3.
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2 Main Results

In this section and in sequel, we consider a metric space (X,BX) where BX is
the Borel σ-algebra generated by all open sets, and probability measures μn, μ
on this metric space with μn weakly converging to μ.

Theorem 2.1. Assume fn(x), f(x) are real valued measurable functions de-
fined on X such that

(i) fn(x) converge to f(x) uniformly on every bounded set as n → ∞;
(ii) fn(x) are bounded on every bounded set;
(iii) limC→+∞ supn

∫
{|fn(x)|>C} |fn(x)|μn(dx) = 0;

(iv) f(x) is continuous almost everywhere with respect to μ.
Then

lim
n→∞

∫
X

fn(x)μn(dx) =

∫
X

f(x)μ(dx).

Theorem 2.2. Assume fn(x), f(x) are real valued measurable functions de-
fined on X such that

(I) fn(x) converge to f(x) uniformly on every compact set as n → ∞;
(II) fn(x) are bounded on every compact set;
(III) limC→+∞ supn

∫
{|fn(x)|>C} |fn(x)|μn(dx) = 0;

(IV) f(x) is continuous almost everywhere with respect to μ.
Then

lim
n→∞

∫
X

fn(x)μn(dx) =

∫
X

f(x)μ(dx).

Theorem 2.3. Assume fn(x), f(x) are real valued measurable functions de-
fined on X with limC→+∞ supn

∫
|fn(x)|>C

|fn(x)|μn(dx) = 0. Define the set

E =
{
x ∈ X : there are xn ∈ X with lim

n→∞
xn = x, but lim

n→∞
fn(xn) �= f(x)

}
.

If μ(E) = 0, then

lim
n→∞

∫
X

fn(x)μn(dx) =

∫
X

f(x)μ(dx).

3 Proofs

Let’s first prove Theorem 2.3. Essentially, Theorem 2.1 and Theorem 2.2 are
two special cases of Theorem 2.3 (see the proofs of these two theorems at the
end of this section). Before the proof, we recall two results in [1].

Lemma 3.1 (Theorem 5.2 in [1]). Let Pn, P be probability measures de-
fined on on metric space (X,BX) such that Pn weakly converges to P , and
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h(x) be a real valued, bounded, measurable function with property that it is
continuous almost surely with respect to P. then

lim
n→∞

∫
X

h(x)Pn(dx) =

∫
X

h(x)P (dx). (2)

Lemma 3.2 (Theorem 5.5 in [1]). Let Pn, P be probability measures de-
fined on metric space (X,BX) such that Pn weakly converges to P, and hn(x), h(x)
be functions with values in a separable metric space (X ′,BX′) satisfying P (E) =
0, where

E =
{

x ∈ X : there are xn ∈ X with lim
n→∞

xn = x, but lim
n→∞

hn(xn) �= h(x)
}

.

Then on metric space (X ′,BX′),

Pn ◦ h−1
n weakly converges to P ◦ h−1.

Proof of Theorem 2.3. From conditions of theorem and Lemma 3.2, we first
get

μn ◦ f−1
n weakly converges to μ ◦ f−1 on real line. (3)

Claim 1: any constant C > 0 (except for countably many C)

(a). lim
n→∞

∫
{|fn(x)|≤C}

fn(x)μn(dx) =

∫
{|f(x)|≤C}

f(x)μ(dx);

(b). lim
n→∞

∫
{|fn(x)|≤C}

|fn(x)|μn(dx) =

∫
{|f(x)|≤C}

|f(x)|μ(dx).

To prove part (a) of Claim 1, invent a real valued function g defined on real,

g(y) =

{
y if |y| ≤ C,

0 if |y| > C,

and from (2) and (3), if μ ◦ f−1{−C, C} = 0, then

lim
n→∞

∫
R

g(y)μn ◦ f−1
n (dy) =

∫
R

g(y)μ ◦ f−1(dy),

which is the same as

lim
n→∞

∫
X

g (fn(x)) μn(dx) =

∫
X

g (f(x))μ(dx),

and this equals to, by definition of g (and the fact the fn, f are real valued),

lim
n→∞

∫
{|fn(x)|≤C}

fn(x)μn(dx) =

∫
{|f(x)|≤C}

f(x)μ(dx).
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Thus part (a) of Claim 1 is proved for such C with μ ◦ f−1{−C, C} = 0 =
μ{x : |f(x)| = C}, from which we get that the set of C such that above doesn’t
hold is at most countable because of finiteness of measure μ. Now for part (b)
of Claim 1, the proof copies that of part (a) but with a new real function

g(y) =

{
|y| if |y| ≤ C,

0 if |y| > C.

Claim 2: ∫
X

|f(x)|μ(dx) < +∞.

To see this, we use part (b) of Claim 1.∫
{|f(x)|≤C}

|f(x)|μ(dx) = lim
n→∞

∫
{|fn(x)|≤C}

|fn(x)|μn(dx) (4)

≤ sup
n

∫
X

|fn(x)|μn(dx).

Now we show supn

∫
X
|fn(x)|μn(dx) < +∞. From condition

lim
C→+∞

sup
n

∫
{|fn(x)|>C}

|fn(x)|μn(dx) = 0,

we can choose some C0 such that supn

∫
{|fn(x)|>C0} |fn(x)|μn(dx) ≤ 1. Then

sup
n

∫
X

|fn(x)|μn(dx)

≤ sup
n

∫
{|fn(x)|≤C0}

|fn(x)|μn(dx) + sup
n

∫
{|fn(x)|>C0}

|fn(x)|μn(dx)

≤ C0 + 1 < +∞.

Now we take limit limC→∞ for (4), which proves Claim 2 since f(x) is almost
everywhere finite with respect to μ (since it follows from the fact f(x) is real
valued that μ{x : |f(x)| = ∞} = 0).∣∣∣∣

∫
X

fn(x)μn(dx) −
∫

X

f(x)μ(dx)

∣∣∣∣
≤

∣∣∣∣
∫
{|fn(x)|>C}

fn(x)μn(dx) −
∫
{|f(x)|>C}

f(x)μ(dx)

∣∣∣∣
+

∣∣∣∣
∫
{|fn(x)|≤C}

fn(x)μn(dx) −
∫
{|f(x)|≤C}

f(x)μ(dx)

∣∣∣∣
→ 0, as n, C → ∞,
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where limC→∞
∣∣∣∫{|fn(x)|>C} fn(x)μn(dx)

∣∣∣ = 0 is from assumptions of theorem,

and limC→∞
∣∣∣∫{|f(x)|>C} f(x)μ(dx)

∣∣∣ = 0 is from Claim 2 by using absolute con-

tinuity of integral since limC→∞ μ{|f (x)| > C} = 0. The term in the second
absolute value sign converges to zero as n → ∞ because of part (a) of Claim
1.

Proof of Theorem 2.1. We want to prove that condition μ(E) = 0 in Theo-
rem 2.3 is satisfied provided (i),(ii) and (iv) are given. Recall set E,

E =
{

x ∈ X : there are xn ∈ X with lim
n→∞

xn = x, but lim
n→∞

fn(xn) �= f(x)
}

,

for any x0 ∈ E, we claim x0 ∈ {discontinuity points of f}. If not, we consider
bounded set {x ∈ X : dist(x0, x) ≤ 1}, since fn are bounded and converge to f
uniformly on this bounded set and f is continuous at x0, then for any sequence
xn → x0, we have fn(xn) → f(x0), so x0 /∈ E, and this is a contradiction. Thus

μ(E) ≤ μ{discontinuity points of f} = 0.

Proof of Theorem 2.2. We want to use (I), (II) and (IV) to prove μ(E) = 0.
Again, for any x0 ∈ E, we claim x0 ∈ {discontinuity points of f}. Argue
by contradiction, assume x0 is a continuity point of f. Since x0 ∈ E, there
exist xn → x0, but limn→∞ fn(xn) �= f(x0). Now we construct a compact
set {x0, x1, x2, · · · }. On this compact set, fn are bounded and converge to f
uniformly, and f is continuous at x0, thus limn→∞ fn(xn) = f(x0), which gives
a contradiction.
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