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Abstract

In this paper, a simple and important approximate technique is present for
solving the variable coefficients linear Volterralntegro-Fractional Differential
Equation (VIFDE) of order na for 0 < a < 1and n € N. This technique is based
on the Generalized Taylor matrix method. We convert this equation to a system of
linear algebraic equations after using collocation points; finally apply Gaussian
elimination method to determine the fractional Taylor coefficients. Hence, the
truncated generalized Taylor series approach is obtained. Algorithm for solving
VIFDEs using above process have been developed, in order to express these
solutions, program is written in MatLab (V7.6). Finally,several illustrative
examples are presented to show the effectiveness and accuracy of this method.

Keywords: Integro-Fractional Differential Equation, Generalized Taylor's
Method, Collocation Points, Caputo Fractional Derivative.

1 Introduction

In this paper, we consider the high-order linear Volterralntegro- Fractional
Differential Equation (VIFDE) of order na for 0 < a < land n € N, with
variable coefficients:

n-1

EDRey(x) + D P ()EDSTY () + Pu(y()
i=1

= f(x) + 1 f xz ko(x, £)EDI 0%y (1) dt (D)
@ =0
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together with initial conditions:

where x € [a,b] = I; u = max {[na],[ma]} and y, € R for all k; as well as,
f,Pi:I > R and k;: § X R - R with (§ = {(x,t):a <t < x < b}) denotes the
given continuous functions, y(x) is the unknown function which is the solution of
(1), and A is a scalar parameter.

The consider integro-fractional differential equation of Volterra type have
been found to be effective to describe some applied sciences such as polymer
physics, thermodynamics, electrical networks and bioengineering. The other larger
filed which requires the use of it is the unsaturated behavior of the Free Electron
Laser (FEL) [4, 6, 9, 10].

Taylor methods to find the approximate solutions of integral and
integro-differential equations have been presented in many papers [3, 7, 8, 11, 13].
During recent years, a new generalized Taylor’s formula that involves Caputo
fractional derivatives was presented to solve Bayley-Torvik equations [14].

In this paper, we discuss the numerical solution of equation (1) by a new
algorithm based on the Taylor collocation method [1], generalized Taylor’s
formula [15] and Caputo fractional derivative [4]. Applying the collocation points
transforms the given linear VIFDE with variable coefficients and initial conditions
to matrix equation, including unknown fractional Taylor coefficients. The
coefficients of generalized Taylor’s formula can be computed by means of the
matrix equation and the computer package program MatLab (V7.6).

2 Preliminaries

For completeness, this part introduces the necessary definitions and
important properties of fractional calculus theory [2, 4, 5, 12], which are used
throughout this paper.

Definition 2.1:

A real valued function y defined on [a, b] beinthe space C,[a,b],y € R, if
there exists a real number p >y, such that y(x) = (x — a)?y.(x), where
y. € C[a, b], and it is said to be in the space C'[a, b] iff y™ € C,[a,bl,n € N, .

Definition 2.2:
Let y€C,la,bl,y =2—1and a€R* . Then the Riemann-Liouville

fractional integral operator ./ of order a of a function y, is defined as:

1 X
Jry(x) = mf (x—t)*yt)dt , a>0

Jry(x) = Iy(x) = y(x)
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Definition 2.3:

Let a=>0 and m =[a], (where [.] is the ceiling function), the
Riemann-Liouville fractional derlvatlve operator D%, of order a« and y €
™ [a, b], is defined as:

aD¥y(x) = D" J¥+ %y (x)
If a=m,meNy,and y € C™ [a,b] we have

RD2y(x) = y(x) ; RDmy(x) = y™(x)

Definition 2.4:
The Caputo fractional derivative operator D¢, of order « € R*of a function

y €Cm[a,b] and m—1 <a < m (m € N) is defined as:
aDEy(x) = J¥ Dy (x)
Thus for a =m,m € Ny,and y € C™ [a,b], we have forall a < x < b

dm
DIy =yG) 5 DTG = DPy(e) = LI

The most common properties of the fractional operator are listed below:
(1) 8Dy (x) = DI JT ¥ () # JP DYy (x) = (DZy(x) ;m = [a]
(i) 5D%y(x) = BDZ[y(x) = Tm_1[y;al]; m—1<a<m and
Tpn—1Ly; aldenotes the normal Taylor polynomial of degree m — 1 for the
function y centered at a.

(iii) C,I;D:g(clfl $ szz)(x) = Clc’ngafl(x) ? CZ a afz (x) Cq1 and Cy are
constants .

(iv) Bp%A = A
(V) &Dg alxy(x)=y(x) and
m—1 ,(%)
JEDE@ =y -y L

(x a)

and DA = 0;A isany constantand a > 0,a € N.

(x —a)*; m = [a]

We adopt Caputo’s definition, which is a modification of the R-L definition
and has the advantage of dealing properly with initial value problem, for the
concept of the fractional derivative, [12].

Lemma 2.5, [4]:
Let @« > 0;m = [a] and for y(x) = (x — a)ffor some £ > 0. Then:

0 if Be{012..,m—1}

rB+1)

DFy(x) =<{T(B—a+1)
|

\

(x—a)f~®* if BeNandf=>m
or f¢€Nandf>m-—-1
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Theorem 2.6, [15]: (Generalized Taylor's Formula)
Suppose that SDE*y(x) € C(a,b], for k=0,1,2,..,n+ 1, where
0 < a <1, then we have

n .
(x —a)“ .
y(x) = TGa+ D [gDalca}’(x)]x:a + R7(x,a)

i=0

with
(x _ a)(n+1)a (
RS = cpn+ia € Vx €
H0) = e Da T D) [6D8 0y ()] _ 9 € [a,x], vx € (a,b]

where

Cpna — CpalCpa Cna ;
SDR* = ¢DESDE ... SDF(n — times)

3 Fundamental Matrix Relations

We assume that the solution of linear VIFDEs as formed in equation (1)
is a truncated a-Caputo generalized Taylor’s series. Let us first write equation (1)
in the form:

DI (x) = f(x) + AV (x) - (3)
where the sequential fractional (1ifferential part is
DEG) = ) PGIDI Y () i P) = 1 - (@)
and the Volterraintegro—fractioraz(l) p?nrt is
VA(x) = f ) D ki, ) DOy (0) de .. (5)
a r=o

Now we convert the solution y(x) and its k(€ Z*)-sequential a-Caputo
fractional derivative {DX%y(x) , parts D%and V%, and the initial condition in
equation (2) to matrix form.

3.1 Matrix Relations for y(x) and $DX%y(x)

We assume that the function y(x) and k-th sequential « -Caputo
fractional derivative $DX¥%y(x) can be expanded to a-Caputo generalized Taylor
series about x = 7 (a < 7 < b) as follows:

y(x) = ;mx —0 5 Y, = ey DY () .. (6)
and
CDkry(x) = » Y (x — 1)@ (D

where, for k = 0, $D%y(x) = y(x) and Y =Y, forall r = 0,1,2, ... .
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First, we take a-Caputo derivative for equation (7) with respect to x,
using lemma 2.5 and definition of sequential fractional derivative:

S8y () = D2 (DY) = ) Y EDg -y
r=0

_ N (%) F(T(X-}-l) _ r-1a . e
_ZYT Fr—Darn® D s =r-D

-
_ ZY(k) 'N(r+Da+1)
- r

=0

_ ra
Trat1) 79 -+ (8)

from expression (7), we can see that
EDI Dy () = H ¥ (x oy (9

r=0
To get the recurrence relation between the fractional Taylor’s coefficients
Y® and Y**V of Cpkay(x) and SDYTV%y(x) respectively, we use the
equality between the relations (8) and (9). Thus

I((r+1a+1)

(k+1) (k)

Y, =, ; rk=012,.. .. (10
T T F'(ra + 1) r (10)

we now take r =0,1,...,N, and assume Yr(k) =0 for r > N. Then we can
put the recurrence relation (10) in the matrix form:

ACHD = A A® . k=012, ... . (11)
where
_y® v 0]
AW = [y® v Yz( ). YIS )]
and
[0 T(a+1) 0 0
ra+1) ..
o o LGetD 0
FNa+1)
A= : : .. (12)
. ) . I'(Na + 1)
I((N-1Da+1)
L o 0 0 0 T(N+1)X(N+1)

By substituting k = 0,1,2, ... into equation (11) we have the following matrix
relations:
AD = MA® = MA
AD =MAD = M(MA) = M2A

A® = pka ..(13)
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Which is the recurrence relation matrices between the fractional Taylor
coefficient matrix <4 of y(x) and the fractional Taylor coefficient matrix 4%
of the k-th sequential a-Caputo derivative of y(x), {D¥*y(x). Clearly that
AV =A4=[Y, Y, - Y]t .

Using matrix relation (13) expresses the k -th sequential « -Caputo
derivative of y(x) in equation (7) in the following matrix form:

¢pkay(x) = X*A® = X*M*A ; MO =1 ..(14)
where
X*=[1 (x-0% (x-1** - (x=D"w+n
Then substituting the collocation points defined by
x;=xy+ih,i=0:N,h=(b—-a)/N;xg=a,xy=b ..(15)
From matrix expression (14) and using (15), we obtain the matrix forms:

[gD,’;‘“y(x)]xzxi = X,‘C"L.M"‘cfl ;k=01,...,N ..(16)
Thus, we get a new matrix form
ylkal = caprkq ..(17)
where
t
ylkal = [[gDJLCQY(x)]x:xO [gDJIc(ay(x)]xmcl [gDﬁlcmy(x)]x=xN] .. (18)
Xﬁ‘fxo 1 (xo—1% (x0— T)za (xo — T)Na
C% = X?l = [1 (%1 — T)a. (%, — )% (1 —.T)Na .(19)
[XJ?NJ |-1 (xN - T)a (xN - T)Za o (xN - T)NaJ(N+1)X(N+1)

In addition, from matrix equation (14), putting k = 0 and using the a-Caputo
properties, we can write the matrix relation solution form as:
y(x) = X*A .. (20)

3.2 Matrix Relation for a-Caputo Differential Part DZ(x)

To derive a matrix form of DZ¥(x) in the relation (4), first we substitute the
collocation points (15) into a-Caputo fractional differential part to obtain the
system:

X=Xk

n
DE(x,) = Z PG| k=01, N .21
i=0

The system (21) can be written in the matrix form:

n
D% = Z p,yln=bal ..(22)
i=0
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where

P; = diag[P;(xo) Pi(x1) - P"(xN)](NH)} .. (23)

D¢ = [DF(xo) DF(xq) -+ DF(xp)]
andY'k@l ; k = 0:n , are defined in equation (18). Then from equations (22 and 17),
we obtain the matrix relation:

n
D = {Z Pic“M"—i}cﬂ ..(24)
i=0

3.3 Matrix Relation for a -Volterra Integro-Fractional
Differential Part V.*(x)

First: the kernel functions k,(x,t) in the relation (5) can be approximated
by a truncated normal Taylor series of degree N; about x =7,t =7 (a <17 < b)
in the form:
Ny Ny
ko(x,t) = Z Z KoHx—1)"(t—-1P ,£=01,...m ..(25)
r=0p=0
where
r 1 arﬂ’k{z(x, t)
™ —
rip!  0x"otP (rmrt=1)

The expression (25) can be put in the matrix form

; p=01,..,N; ...(26)

kp(x,t)] = XK, Tt ; £=0,1,..,m .. (27)

where

X=[1 (-7 (-1 - (@x-0D"]w+

T=[1 (-1 (t-1?% - (t_T)Nl](N1+1)
and

[ xégo 7(51 iK(le]
£ £ £
K, = [%fp] — | Ko ) Kix ) ‘{Kl."’l ...(28)

Kho XKh K
N10 Ni1 NiN1d(n, +1)x (g +1)

Second: substituting the matrix forms (14) and (27) corresponding to the

functions SD™ Y%y (t) and k,(x,t) into the equation (5), V.%(x) , we have the

matrix relation:
x m
[V (x)] = ] {XZ K{;TtT“Mm‘fcfl}dt
a £=0

=X K }[(x)]vrm-f> A ..(28)
(2
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where
T*=[1 (t-0% (t-1>** - (t-—DN]

.7'[(X) = [hL'](X)] = fthTa dt ;
(x _ T)i+ja+1 _a (a _ .L.)i+ja+1

ha () = i+ja+1

..(29)

i=0,1,..,N;
j=0,1,..N

At last, we use the collocation points in equation (15), to obtain the matrix forms:

m
Ve = c( Kﬂmvtm-f>cﬂ ..(30)
£=0
whereC, K,, H and M™~¢ matrices and can be written by blocked matrices as
follows:

Ho=diaglH(x) HE) -~ Helwsy - GD)
MO =[m? MO . MOy o I=m—4
K, = diag[K, K, - Kf](N+1)
C= diag[Xxo Xx1 XxN](N+1)
where
X, =1 (-1 (-1 - (—0D"]w+1

3.4 Matrix Relation for the Initial Conditions

Here we can use the matrix relation (14) to obtain the corresponding
matrix form for initial condition (2). Using equation (14) with definition 2.4 and
specially putting x = e, (a < e < b):

() |eel =1 (e=7)% (e—17)2* - (e—7)V*|MO°A =EM°A

Therefore, for x = e, the k-sequential a-Caputo fractional derivative, $DX%y(x),
can be given in the matrix form:
[GDX Y ()| x=e] = EM A - (32)
Substituting (32) into (2), to obtain
EM*¥A=y,; k=01,..,u—1

Now, taking
S =EM* =[S0 Sk1 " Skn] ..(33)
Finally, condition (2) becomes
SkA = [yi] or [Sk; vl .. (34)

k=01,..,u—1; u=max{[nal, [mal}
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4  The Method

In this section, first we construct the fundamental matrix equation
corresponding to high-order linear VIFDE with variable coefficients (1), and
secondly we addthe initial conditions (2) to this matrix, and then solve this linear
algebra equation to find the fractional generalized Taylor’s coefficients which is
the solution of equations (1-2) after putting init equation (20).

Inserting the matrix relations (24) and (30) into equation (3), we obtain
the fundamental matrix equation:

m
{Z P,CeM™E — ACZ Kﬂ[Mm“’}cfl =F ..(35)
i=0 £=0
where
F=[fxd) flx) - fGp]f .. (36)
andP;,C*, M,K,(£ = 0,1, ..., m) and H are defined in equations (23,19,12,28,31)
respectively. Briefly we can write (35) in the form:

RA=F or [R;F] ..(37)
that corresponds to a linear algebraic system of (N + 1) equations with the
(N + 1) unknown fractional generalized Taylor coefficients (Y,,Y;, ..., Yy)
where

anrn-—i m—+
=R pq](pq ) ZPC M AC’Z)KE}[M

Finally, to find the unknown fractlonal coefficient in truncated generalized Taylor
formula (20) which is the approximate solution of problem (1) with condition (2),
by replacing the rows of matrix (34) by the last p-rows of the matrix (37), we have
the required augmented matrix

[ Roo Ryq Rov 5 f(xo) 7
Ry Ryy Riy ; f(x1)
[# 7] = |Ru-wo Ru-ps - Ruoun 5 f Cw-d)| 39
Soo So1 Son ; Yo
S10 S11 S1in ) V1
L Sy—1,0 Sp-11 -+ Su-1N Yu-1 |

or, the corresponding matrix equation
RA=F ..(39)
If rank R = rank [R;F] =N +1 then by Gaussian elimination the
coefficients Y,.,r = 0,1, ..., N in matrix A are uniquely determined by equation
(38). Thus the linear VIFDE (1) with initial conditions (2) has a unique solution,
which is given by the truncated fractional generalized Taylor series
N

y(x) = ZYT (x—1)™ +Rf(x,7); a<x,t<b,N =max{n m}
r=0
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Also, if rank R =rank [R;F] < N + 1, then the proposed method fails to
provide a solution, but in this case, the number of collocation points (or
equivalently the dimension of the matrix R ) can be increased to find the
particular or general solution.

The Algorithm [GTM-V]:
Step 1:
a. Input the number of truncated generalized Taylor series N such that
(= max{n, m})and truncated normal Taylor series N;.
b. Assume h=(b—-—a)/N,(N€eN).
c. Put y, initial conditions, k = 0,1, ..., u — 1; u = max{[nal, [mal}.
Step 2: Determine the matrices M and Ke({’ = m) from the equations(12)
and (28) respectively.
Step 3:
a. Set the collocation points x, = xo + kh,k = 0:N,xo = a,xy = b
b. Evaluate the matrices P;(i = 0,1, ...,n),F and C* from the equations (23),
(36) and (19) respectively.
c. Compute the matrix #(x) = [h;;(x)] from equation (29) for all
x=x,,(k=0:N)andeach i=0:N,; j=0:N .
Step 4: Construct the conditional u-row matrix S;(k = 0,1, ...,u — 1) from
equation (33).
Step 5: Construct the matrices R and F which are represented in equ. (38)
Step 6: Solve the system (39) for fractional generalized Taylorcoefficients
Y, (r = 0: N)using Gaussian elimination method.
Step 7: Substituting all ;. ‘s into truncated generalized Taylor series (3) toobtain
the approximate solution y(x) of y(x).

5 Numerical Experiment

In this section, we select some examples in which the exact solution
already exists to show the accuracy, efficiency and effectiveness of the proposed
algorithm [GTM-V]. All of them were performed on the computer using a
program written in MatLab (V7.6). The least square errors in tables are the values
of XM o[y(xx) — ¥n(xx)]1?, M € N at M-selected points xy.

Example 1:
We first consider a high-order linear VIFDE with variable coefficients

ED24y(x) + x5D%y(x) — 2y(x)
= FO0 + f [(x = 262)5D02y (6) + (2 — Dy (©)]dt
0
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2 1
flx) ==x5—=x*—x?+5x—2

3 2
_ﬂ<ixz _Lx_i)xl.s __10 os
r(.8)\76 727 40 3r(0.6)
together with initial condition: y(0)=1; 0 <x < 1.

Now we try to find the approximate solution y(x) by truncated (N = 5)
generalized Taylor series around x = 7 = 0:

5
y(x) = Z)erm ;Y= m[gl);“ﬂx)]x:o
r=

wherea =02, n=2,m=1,a=0,b=1,e=0, A=1; and
Py(x) =1, P,(x) =x, P,(x) =-2
ko(x,t) = x — 2t2, ki(x,t) =tx? -1

Then, for N =5 and N; = 3 , the matrix equation (35) became:

{PoCEM? + P,CEM™ + P,CYMO — C(K HM™ + Ky H M)} A = F

whereP,, P;, P,; C*, M are matrices of order (6 x 6) defined by:

0 0 0 0 0 © -2 0 0 0 0 o0
I[O 02 0 0 © O]I I[o -2 0 0 0 o]l
0 0 04 0 0 © o 0o -2 0 0 o0
PO_I'Pl_o 0 0 06 0 O P2 = 0 0 0 -2 0 0
0 0 0 0 08 0 0O 0 0 0 =2 0
0 0 0 0 0 1.0 o 0 0 0 0 =2
1 0 0 0 0 0 1
1 (02)¢ (0.2)2* (0.2)** (0.2)** (0.2)%*
co = |1 (0.4)* (0.4)% (0.4)%* (0.4)** (0.4)°
1 (0.6)* (0.6)%* (0.6)3® (0.6)** (0.6)°*
L (08)* (0.8)% (0.8)% (0.8)* (0.8)5¢
1 1 1 1 1 1
- 0 0 0 0
0 T'a+1) rQCa+1) 0 0 0
8 8 Ta+1) TGa+1) 0 0
0o 0 0 0 rGa+1) [GatD
0 0 0 0 0 F4a +1)
. 0 0 0 0o

andF is a vector of order (1 x 6) defined by:
F=[-2 -2.000633 —1.813402 —1.753459 —1.866603 —2.156238]"

Also, G, K, H and M are block matrices defined by equations (31) respectively,
and here
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C’=diag[Xx0:0 Xx1=0.2 Xx2=0.4- Xx3=0.6 Xx4_=0.8 Xx5=1]
Ky ©
Ke=1o Kl]
Mm?=[m? mM? m?® mM?® po a?)t, 9=0and1
where
Xe=0=1[1 0 0 0] 0 0 —2 07
Xe02=[1 02 004 0.008] K0=(1) 8 8 8
Xy,=04=1[1 04 0.16 0.064] 0o 0 0 ol
Xy,=06 =[1 0.6 036 0.216] —1 0 0 O
Xepmos=[1 08 064 0512] K= 299
Xx1=1=[1 1 1 1] _0 0 0 0_
17-[(x0)=04><6
r 0.2 0.120797 0.075044 0.047591 0.030661 0.02
H(x,) = 0.02 0.013178 0.008755 0.005857 0.003942 0.002667
1 0.002667 0.001812 0.001236 0.000846 0.000581 0.0004
L 0.0004 0.000276 0.000191 0.000132 9.198198 6.4e — 05
r 0.4 0.277518 0.198041 0.14427 0.106767 0.08 1
H(x,) = 0.08 0.060549 0.04621 0.035513 0.027454 0.021333
2 0.021333 0.016651 0.013047 0.010259 0.008092 0.0064
L 0.0064 0.005075 0.004033 0.003212 0.002562 0.002048-
r 0.6 0.451440 0.349368 0.276008 0.221513 0.18
H(x;) = 0.18 0.147744 0.122279 0.101911 0.085441 0.072
3 0.072 0.060944 0.051789 0.044161 0.037774 0.0324
10.0324 0.027860 0.024011 0.020737 0.017943 0.015552
r 0.8 0.637568 0.522634 0.437345 0.371783 0.32
H(x,) = 0.32 0.278212 0.243896 0.215308 0.191203 0.170667
4 0.170667 0.153016 0.137729 0.124400 0.112709 0.1024
L 0.1024 0.093267 0.085142 0.077885 0.071382 0.065536-
r 1 0.833333 0.714286 0.625 0.555556 0.5 1
H(xs) = 0.5 0.454545 0.416667 0.384615 0.357143 0.333333
5 0.333333 0.3125 0.294117 0.277778 0.263158 0.25
0.25 0.238095 0.227273 0.217391 0.208333 0.2
From (34), the matrices for conditions are computed as:
[S;vel=[1 0 0 0 0 0 ; 1]

Substituting the above matrices for fundamental equation, we have the

augmented matrix based on condition which is:

[R; F]
-2 0

0.887264

—1.8008 —1.177486 0.031579
_|—-1.6128 -1.137741 -0.061656
—1.4648 —1.054932 —0.058241
—1.4048 —-0.992884 —0.033240

1 0

0

0

0.084391
0.020342

0.031685
0.074032

0

0

0.101253
0.070936

0.097176
0.160529

0

0

0.099916
0.100301

0.1443296
0.230902

0

-2
—2.000633
—1.813402

—1.753459
—1.866603

1
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Solving this system, generalized Taylor coefficients are obtained

A =[1.0

—0.883929e — 14 —0.783885e — 15

0.451208e — 12

—.952065e — 12

1777

-2.0]*

Substituting the elements Yr(r =E) for truncated equation (3), we get the
approximate solution ¥(x)of y(x):
y(x) =1-2x
This coincides with the exact solution.

Example 2:

Let us consider the linear VIFDEon 0 <x <1 :

€Dy (x) — 2Dy (x) + (1 4+ x)y(x) = £(x)

X
+ f [xt§DEy(t) + (x* — t)§DIy(t) + e**fy(t)] dt
0
f)=x>4+x3—x2—-1-7e*—e?*(x3—-3x2+6x—7)

20

6 (1_

T ra—20

5-2«a

with initial conditions: {

+ 3 ( 2
4 —a) S—ax

2 _ 1) x3—a

x3) x3—2a

if 0<a<0.5; y(0)=-1
if05<a<i;

6
TG

6—a

y(0) =-1,y'(0) =0

The exact solution of this problem is known y(x) = x3 — 1.
Apply the algorithm [GTM-V], for (N =5and N, =5), obtain the
fundamental matrix relation for « = 0.6 :

{POC’“]V[Z + P,CYM? + P,C* MO

where

_C(KO}[MZ + Kl}[Ml + Kz.{]'[MO)

PoCOM2 + P,CYM? + P,COMP

1

1.04
_|1.16

~ 1136
1.64

2

—0.446758

—0.050798
0.222655

0.554232
0.987733

1.553242

1.101803

1.017815
1.132306

1.384755
1.817243

2.485248

C(K, X M? + K, M + K, M)

0

0.270422
0.733713

1.497929
2.726886

4667384

0

0.055105
0.262428

0.768137
1.796470

3.688934

0

0.018018
0.139329

0.526144
1.451631

3.36302

0

0.661475
1.052335

1.511109
2.156601

3.115492

0

0.005827
0.071227

0.346863
1.137877

3.003534

0

0.364998
0.858850

1.510388
2.435090

3.816633

0

0.001991
0.038025

0.237335
0.922699

2.769401

4

=F

0

0.184692
0.650431

1.425435
2.645676

4.572600

0

0.000705
0.020845

0.166157
0.764367

2.606586
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and
F=[-1 -0.585590 0.203303 1.397271 2.968683 4.635446]"
From equations (33 and 34), the matrix forms for initial conditions are:
Sk A=yl or [Si;vil; k=0 and 1

or clearly

[So;yol = [1 0 0000 ; -1]

[S;y:]= [0 0893515 0 0 0 O ; 0]
After the system of the augmented matrices and condition are computed, we get the
new augmented matrix in the form

[R; F]
1 —0.446758 1.101803 0 0 0 ; -1
0.769578 —0.105903 0999797 0.655648 0.363007 0.183988 ; —0.585590}
04262873 —0.039773 0992977 0981108 0.820825 0.629587 ; 0.203303
=1-0137929 —0213905 0.858611 1.164246 1273054 1259278 ; 1.397271
1 0 0 0 0 0 ; 1 J
0 0.893515 0 0 0 0 ; 0

This system has the solution
A =[-1.00004 —0.103101e — 3

andy(x) is evaluated as:

7(x) = —1.00004 — 0.000103101 x3/5 — 0.0000194346 x5/5
+0.00271458 x°/5 — 0.00665339 x'2/5 + 1.00419x>
For a = 0.4, we apply the algorithm [GTM-V] by the previous procedure
to obtain the approximate function ¥(x) for the solution of consider problem, take
N =N, =6;
7(x) = —1.00 — 0.0225457 x2/> — 0.0107382 x*/> — 0.721801 x®/5
+ 3.48758 x8/5 — 6.13334x2 + 4.35416 x1%/5

—0.194346e —4 0.271458e —2 —0.665339¢ —2 1.00419]"

Table (1), for @ = 0.6, presents a comparison between the exact and
approximate solution which depends on the least square error and running time with

different values of N and Nj.
Table (1)
X Exact Present Method for N = 5
Solution N, =5 N, =7 N, =10 N, =15
0.0 -1 —1.00004 -1 -1 -1
0.1 —0.999 —0.999046 —0.9990002 —0.999 —0.999
0.2 —0.992 —0.992039 —0.9920001 —0.992 —0.992
0.3 —0.973 —0.973041 —0.9730002 —0.973 —0.973
0.4 —0.936 —0.936054 —0.9360006 —0.936 —0.936
0.5 —0.875 —0.875074 —0.8750012 —0.87500001 —0.875
0.6 —0.784 —0.784092 —0.7840019 —0.78400002 —0.784
0.7 —0.657 —0.657097 —0.6570026 —0.65700003 —0.657
0.8 —0.488 —0.488078 —0.4880030 —0.48800004 —0.488
0.9 —0.271 —0.271021 —0.2710029 —0.27100005 —0.271
1.0 0.0 8.86e — 5 —2.3le—6 —7.22e — 8 —1.2e — 13
L.S.E 0.414783e — 006 | 0.336713e — 009 0.816289¢ — 013 0.241e — 024
R.T/Sec 0.460625 0.660062 1.081343 1.845121
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For a = 0.4 , comparisons of numerical result with the exact solution are

showed in table (2) for different values of N and N;.
Table (2)
N=6 N=9
(N: Nl)
N1=6 N1=8 N1=1O N1=6 N1=8 N1=10
Error 0.60252 0.59104 0.59063 0.37327 0.17733 | 0.79683
e—01 e—01 e—01 e—07 e—07 e—08
R.T/Sec | 0.57448 0.82439 1.03503 0.62802 0.85083 | 1.08504

6 Conclusion

To find analytically the exact solutions of high-order linear VIFDES with
variable coefficients are usually difficult and mostly impossible. For this purpose,
we introduced a new numerical method for approximating the solution of such a
problem, in which a generalized Taylor collocation method is applied in matrix
form.

A considerable advantage of the method is that the generalized Taylor
coefficients of the solution are found very easily by using computer programs. For
this reason, this technique is much faster than the other methods.

Several examples are included for illustration and good results are achieved.
We concluded that the numerical results show that the accuracy improves with
increasing the truncation limit N, hence for better results, using large number N is
recommended. Also, the truncation limit N; (the degree of the approximating
kernel) must be chosen to be large enough.
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