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Abstract

In finance, accurately forecasting volatility of any financial asset
is very important due to its usefulness in areas such as option pric-
ing, decision making, and risk management. However, this is still a
major challenge despite the many methodologies introduced to solve
this problem. One of such methods include the hybrid models that
combine Fuzzy Inference system(FIS) and the classical GARCH model
which has registered improvement on the forecasting accuracy. There
is however limited literature on the applicability of these methods to
emerging African markets despite their reported outstanding perfor-
mance. This study therefore seeks to forecast stock returns volatility of
daily closing prices of the Uganda Securities Exchange(USE) using TSK
Fuzzy-GARCH model and three GARCH family models; GARCH(1,1),
EGARCH(1,1) and TGARCH(1,1) models. Mean square error(MSE)
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and mean absolute error(MAE) were used to determine the forecasting
performance of the models under study. Results obtained show that the
TSK Fuzzy-GARCH model gives the best forecasting results.

Keywords: Forecasting, volatility, TSK Fuzzy- GARCH, Uganda Securi-
ties Exchange, stock returns

1 Introduction

In finance, volatility plays a great role in areas such as risk management,
option pricing and decision making and as such a lot of methodologies have
been developed with a major aim of obtaining better forecasts. However, this
remains a major challenge despite the tireless efforts by researchers and stake
holders in this field.

According to [1], volatility is defined as a statistical measure of the dis-
persion of returns for a given security or market index and it can either be
measured using the standard deviation or variance between returns from that
same security or market index.

There are major stylized characteristics usually exhibited by financial time
series. Firstly, it was observed by [2] that financial returns displayed volatility
clustering meaning that large changes in the price of an asset are often followed
by other large changes, and small changes are often followed by other small
changes. Secondly, [3] demonstrated that financial data are leptokurtic mean-
ing that the distribution of the returns is heavy-tailed. Thirdly, [4] introduced
the leverage effect meaning that volatility is higher after negative shocks than
after positive shocks of the same magnitude. Thus, the choice of the model
should be based on its ability to account for these stylized characteristics.

Many models have been developed to try to understand the market be-
havior with the aim of managing and if possible mitigating risk. These range
from the Effective Market Hypothesis (EMH), the simple Random Walk model,
Brownian Motion, AutoRegressive (AR), AutoRegressive Moving Average (ARMA),
Generalised AutoRegressive Conditional Heteroscedasticity (GARCH) family
to the Artificial Intelligence (AI) to which FIS is a subset. In literature, the
most successful models that have been widely used are the GARCH family
models and now the AIs which are becoming an interesting and fast growing
research area in the field of finance.

The ARMA approach introduced by [5] on stationary time-series assumes
that variance of the disturbance is constant and also that the data can be
modeled as a linear process which is not always the case. According to [6],
the assumption that variance is constant through time is inefficient and in-
consistent from the statistical point of view. This is because variance changes
with time in real life financial data, a phenomenon called heteroscedasticity.
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This prompted the introduction of models that can account for the varying
variance.

The ARCH model proposed by [7] and its extension, GARCH model by
[8], were the first models to be introduced into the literature. These mod-
els have made it possible to estimate the variance of a series at a particular
point in time, which accounts for their wide use and popularity. Addition-
ally, there is introduction of many more of their extensions like GARCH-M by
[9], EGARCH by [10], TGARCH by [11], AGARCH by [12] and many others.
These extensions are aimed at improving the GARCH model in capturing the
stylized characteristics exhibited by financial data.

Despite these many GARCH family variants, no agreement has been reached
on which model is best in capturing volatility basing on previous studies. Some
show preferable results using simple GARCH(p,q) models whereas others show
that extensions of GARCH models perform better. The performance of these
models varies across markets and time period and is affected by many factors
one of them being whether the market is emerging or developed, the estima-
tion method and many others [13]. Additionally, financial time series data
is complex and non-linear in nature and yet GARCH models are not able to
effectively capture all these characteristics. To solve this, other methodologies
such as fuzzy inference system(FIS) and their hybrids have been developed.

According to [14], FIS is defined as universal approximations that can esti-
mate nonlinear continuous functions uniformly with arbitrary accuracy. They
are comprised of IF-THEN rules defined explicitly for linguistic variables [15].
The concept of fuzzy logic has yielded fruitful results in finance such as stocks,
exchange rates [16].

Although FIS has received utmost attention and application in FTS fore-
casting, it does not capture all the stylized facts of the data such as volatility
clustering and asymmetries present in the data. To solve this problem, differ-
ent hybrid models such as hybrid fuzzy-GARCH have been developed. This
yields better results compared to using a single model in as far as forecasting
is concerned as seen in [17], [18], and [19]. However, the applicability of these
methods is still limited to African markets. This study therefore uses a TSK
Fuzzy-GARCH model for forecasting stock returns volatility of Uganda Secu-
rities Exchange(USE) data from from 04/01/2005 to 31/07/2014 comprising
of 1571 observations. The performance of the TSK Fuzzy-GARCH model is
compared with that of three other models using MSE and MAE. The models
include; GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) models.

2 Method

In this section, a brief description of the models relevant to our study is given.
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2.1 Fuzzy Inference System (FIS)

Fuzzy set theory is a generalization of the classical set theory, [20]. The el-
ements to a given fuzzy set may partially belong to that set. It has been
developed for modeling complex systems in uncertain and imprecise environ-
ment. Fuzzy logic is based on the theory of fuzzy sets. A fuzzy logic model
is a logical- mathematical procedure that allows the reproduction of the hu-
man way of thinking in a computational manner. Thus, FIS can be defined as
the universal approximations that can estimate nonlinear continuous functions
uniformly with arbitrary accuracy [21]. They are comprised of IF-THEN rules
defined explicitly for linguistic variables [15]. The FIS architecture is shown
in Figure 1.
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Figure 1: FIS architecture

There are four major steps followed to implement fuzzy logic to real appli-
cation.

1. Fuzzification: Here, classical data or crisp data is converted into fuzzy
data of MFs. This process involves computing values of Membership
functions (MFs) of fuzzy sets for given values of base variables.

2. Fuzzy rules: At this stage, the IF-THEN logic system as fuzzy rules links
the input to the output variables.

3. Fuzzy inference Process: MFs are combined with the control rules to
derive the fuzzy output.

4. Defuzzification: In fuzzy logic, fuzzy rules produce fuzzy output, which
is in contrast with classical logic rules. It can be a set of values of the
MF values or a linguistic term. MFs are used to retranslate the fuzzy
output into a crisp value; a process known as defuzzification.

The general form of a fuzzy IF- THEN rule is written as;

Rule : IF x is A THEN Y is B

The commonly used methods for developing fuzzy rule systems are those pro-
posed by [22] and [23]. The similarity of these two systems is that the fuzzifi-
cation of the inputs and application of the fuzzy operator is exactly the same
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in both cases. The difference is that in the Mamdani method, the output
is a linguistic label while in the Sugeno method, the output is either a con-
stant statement or a linear statement. This study used the Sugeno method in
developing the fuzzy rules as discussed below.

The Takagi-Sugeno-Kang (TSK) FIS belongs to a broader class of Quasi-
nonlinear fuzzy models. A first-order TSK model with K rules is expressed
as;

Rulek : IF x1 is Ak
i AND . . . xn is Ak

n THEN Y k = P k
0 +

n∑
i=1

P k
i xi,

where xi, i = 1, 2, . . . , n and y are the input and output linguistic variables
respectively. Ak

i , i = 1, 2, . . . , n represent the fuzzy sets; P k
0 and P k

i , i =
1, 2, . . . , n denote the parameters to be estimated. Note that the antecedent
parts of the rules are the same as that of the traditional fuzzy IF-THEN rules,
while the consequent parts are the linear combinations of input variables plus
a constant term and the final output is the weighted average of each rule’s
output.

2.2 GARCH(p, q) Model

This is an extension of the ARCH model by [7] and was introduced by [8]. Let
{Zt}t∈Z be a sequence of independent and identically distributed(iid) random
variables such that Zt ∼ N(0, 1).

Let also Pt and Pt−1 denote the closing market index at the current time,
(t) and previous day (t − 1), respectively. The returns at any time are given

by rt = log
(

Pt

Pt−1

)
. The GARCH(p, q) model can be written as;

rt = µ+ εt (1)

εt = σtZt;

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j,

(2)

where µ is the mean return, p and q are the orders of the process ω, αi and βj
are the parameters to be estimated. In order for the variance to be positive
the necessary condition is that ω > 0, αi ≥ 0 (for i = 1, . . . , p) and βj ≥ 0 (for
j = 1, . . . , q).

One of the shortcomings of GARCH(p,q) model is its inability to capture
the leverage effects and yet these are believed to be present in most financial
data. One such solution to this is using asymmetric GARCH models which can
capture the leverage effects. In this study, we employ TGARCH and EGARCH
models as discussed in the next subsection.
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2.3 The Exponential GARCH Model

This model was developed by [10] and is defined by;

lnσ2
t = ω +

p∑
i=1

αi
| εt−i | +γiεt−i

σt−i
+

q∑
j=1

βj lnσ2
t−j, (3)

where γ is the asymmetric response parameter or leverage parameter. In most
empirical cases, γ is expected to be negative so that a negative shock increases
future volatility or uncertainty while a positive shock eases the effect on future
uncertainty, [1].

For p = q = 1, we have the EGARCH(1,1) model given by

ln
(
σ2
t

)
= ω + β1 ln

(
σ2
t−1
)

+ α1

{∣∣∣∣ εt−1σt−1

∣∣∣∣−
√

2

π

}
− γ εt−1

σt−1
. (4)

2.4 The Threshold GARCH Model

This model was developed by [11] and is a special case of APARCH model by
[24]. Below is its specification;

σ2
t = ω +

p∑
i=1

(αi + γidt−i)ε
2
t−i +

q∑
j=1

βσ2
t−j (5)

where dt−i is an indicator for negative εt, i.e.

dt−i =

{
1 if εt−i < 0, bad news
0 if εt−i ≥ 0, good news.

αi, γi and βj are non-negative parameters satisfying conditions similar to those
of GARCH(p,q) model. γi is the asymmetric response parameter or leverage
parameter. The model reduces to the standard GARCH form when γi = 0.
Otherwise, when the shock is positive (i.e., good news) the effect on volatility
is αi, but when the shock is negative (i.e., bad news) the effect on volatility is
αi + γi . [25], assert that when γi is significant and positive, negative shocks
have a larger effect on σ2

t than positive shocks.
When p = q = 1, we obtain the TGARCH(1,1) model as shown below.

σ2
t = ω + α1ε

2
t−1 + γdt−1ε

2
t−1 + βσ2

t−1. (6)

The dummy variable dt−1 is given by

dt−1 =

{
1 if εt−1 < 0, bad news
0 if εt−1 ≥ 0, good news.

Despite the success of the GARCH models in modeling and forecasting
volatility, they can not explain the dynamical complexities and nonlinearities
in the data. The use of fuzzy-GARCH is one of the solutions to these short-
comings with an aim of obtaining better forecast values.
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2.5 The TSK Fuzzy- GARCH Model

Fuzzy-GARCH model was suggested by [21]. It is described by a collection
of fuzzy rules in the form of IF-THEN statements in order to describe the
stock market fluctuations via a GARCH model. The antecedent of each rule
are fuzzy sets and the consequent is the GARCH model. The lth rule of the
Fuzzy-GARCH(p,q) is written as:

Rl : IF rt−i is Ãl,i AND σ2
t−j is Ãl,p+j

THEN σ2
l,t = ωl +

p∑
i=1

αl,ir
2
t−i +

q∑
j=1

βl,jσ
2
t−j, for l = 1, 2, . . . , L

(7)

where σ2
t is the output of the system, Ãlk for k = 1, 2, . . . , q+p is the fuzzy set.

L is the number of fuzzy IF-THEN rules, rt−i and σ2
t−j are the previous value of

the stock market’s returns and volatility respectively defined for i = 1, 2, . . . , p
and j = 1, 2, . . . , q. This study used Adaptive Neural Fuzzy Inference System
(ANFIS) to determine the parameters of the TSK Fuzzy-GARCH(1,1) model.
The ANFIS identifies the relationship between the input and output data, and
determines the optimal distribution of membership function through a hybrid
learning rule combining the back-propagation gradient descent and the least
squares method.

ANFIS was introduced by [26]. It is a multilayer feed forward network
which uses neural network(NN) learning algorithms and fuzzy reasoning to
map inputs into an output. The ANFIS architecture has five layers; fuzzy
layer, product layer, normalized layer, defuzzification layer and total output
layer [26]. ANFIS gives the advantages of the mixture of neural network and
fuzzy logic.

2.6 Forecasting ability of the Models

The forecasting performance of the models under study was evaluated using
MSE and MAE defined below.

Let h be the number of lead steps, S the sample size, σ̂2
t is the forecasted

variance and σ2 is the actual variance.

MSE =
1

h+ 1

s+h∑
t=s

(
σ̂2
t − σ2

)2
(8)

Another alternative measure is the mean absolute error (MAE) by [27] defined
by

MAE =
1

h+ 1

s+h∑
t=s

| σ̂2
t − σ2 | (9)

Over all, the best model is one that minimizes the error functions.
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3 Results and Discussion

3.1 Data

Daily closing prices of Uganda Securities Exchange (USE) All share index data
from 04/01/2005 to 31/07/2014 with 1571 observations were used. The USE
is the major stock market index in Uganda. The data can be accessed from
http://www.use.or.ug.

Let Pt and Pt−1 denote the closing market index of USE at the current day
(t) and previous day (t − 1), respectively. The USE All Share returns (log
returns or continuously compounded returns) at any time are given by:

rt = log
( Pt

Pt−1

)
(10)

In order to understand the behavior of the USE return series, summary statis-
tics together with its distribution are reported below;

Table 1: Descriptive statistics of USE returns Series

Mean 0.0010
median 0.0003
Maximum 0.4766
minimum -0.4844
Std.Dev 0.0349
Skewness 0.3309
Excess Kurtosis 112.3108
Jarque-Bera 827337.2164
JB probability <0.001
No. of observations 1570
Sample: Jan 04, 2005 to July 31, 2014

Descriptive statistics for the USE ALSI return series are shown in Table
1. As is expected for a time series of returns, the mean is close to zero.
The return series are positively skewed an indication that the USE ALSI has
non-symmetric returns. The excess kurtosis is positive indicating that the
underlying distribution of the returns are leptokurtic or heavy tailed. The
series is non-normal based on the JB test which rejects normality at the 1%
significance level.

Figure 2a shows the distribution of the USE ALSI and Figure 2b shows the
return series distribution. From the graphs, the stock prices are non stationary
while the return series are mean-stationary with a mean return of zero. There
is also evidenced volatility clustering in the return series. This is analogous
to other studied stock exchanges see ([28], [1]). During the years of 2009 and
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Figure 2: USE Daily prices and returns distributions(Jan.2005-July.2014)

2011, volatility was very high. This could be as a result of macro economic
factors like inflation, politics, policies, exchange rate, exports and imports.

Before using the GARCH models under study, several tests were carried
out on the return series. The series were found to be stationary, ARCH effects
were present in the residual series. Using Akaike Information criterion (AIC)
by [29] and Bayesian Information criterion(BIC) by [30], the best specification
for the models was p = 1 and q = 1, that is; (1,1). The GARCH models under
student -t distribution were estimated using quasi maximum likelihood. The
estimation results of the GARCH models under study are indicated in Table
2.

From Table 2, except for the mean return which is not significantly different
from zero for both models in the mean equation, the moving average (MA) and
autoregressive(AR) coefficients are statistically significant at all levels. In the
ARMA(1,1)-GARCH(1,1) model, all the parameters in the variance equation
are significant at 5% level.

In the ARMA(1,1)-TGARCH(1,1) model, except α and the shape param-
eter, the rest of the parameters are not statistically significant in the variance
equation. The leverage parameter, γ in the ARMA(1,1)-TGARCH(1,1) model
is not significant which shows probable absence of leverage effects.

In the ARMA(1,1)-EGARCH(1,1) model,all other parameters are statis-
tically significant at 5% level except α. The leverage parameter, γ in the
ARMA(1,1)-EGARCH(1,1) model is positive and significant which means that
negative shocks have a larger effect on σ2

t than positive shocks.
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Table 2: Estimation results of the GARCH Models for USE returns

Parameter GARCH TGARCH EGARCH
Mean Equation

µ 6.019e-06(0.569) 0.0006(0.273) 0.0006(0.033)
ar1 9.827e-01(< 0.01) 0.977(0) -0.421704(0)
ma1 -9.725e-01(< 0.01) -0.964(0) 0.437906(0)

Variance Equation
ω 3.428e-04(0.023) 0.0003(0.064) -2.556(0.008)
α 1.000(0.020) 0.924(0.007) -0.108(0.192)
β 2.433e-01(0.0004) 0.232(0.1) 0.636(0.000054)
γ − -0.314(0.422) 0.617(0.008)
shape 2.303(< 0.01) 2.393(0) 2.250(0)

Model Performance
JB test 2748893(0) 841560(< 0.01) 842400(< 0.01)
Ljung-Box Test 0.201(1) 2.310(0.9672) 1.06604(0.9997)
ARCH-LM Test 0.153(1) 1.543(0.9999) 0.05199(0.9999)
LL 4264.745 4264.434 4264.880
AIC -5.424 -5.422 -5.423
BIC -5.400 -5.395 -5.396

Note: Values in parenthesis indicate P-Values

The model performance results show that the ARMA(1,1)-GARCH(1,1)
model out performs the ARMA(1,1)-TGARCH(1,1) model in modeling volatil-
ity of USE returns since it has the smallest AIC and BIC. This result is simi-
lar to that of [31] where they found out that GARCH(1,1) outperforms other
models in modeling volatility of USE returns. The ARCH-LM tests show that
ARCH effects are absent in the standardized residuals. Also the Ljung-Box
test accept absence of serial correlation in the standardized residuals. This
means that except for normality tests, all the three models fit the data well.

The estimation results of the TSK-Fuzzy-GARCH(1,1) model are also re-
ported. The results obtained are for 5 linguistic terms with 10 fuzzy IF-THEN
rules as shown in Table 3.

From Table 3, all the consequent parameters are positive except the con-
stant parameter for rule 1. Next, the forecast performance of the models under
study is reported in Table 4.

From Table 4, the TSK Fuzzy-GARCH model performs better than the
ARMA(1,1)-GARCH(1,1)and ARMA(1,1)-TGARCH(1,1) models. The fore-
cast accuracy of the classical GARCH models is not significantly different.
Therefore, the hybrid Fuzzy-GARCH family models perform better than clas-
sical GARCH family models which is in agreement with the results of [32], [33]
and many others.
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Table 3: Estimation results of
the TSK-Fuzzy- GARCH(1,1)
model for 5 linguistic terms.

Rule, l αl,1 βl,1 ωl

1 0.312 0.544 -0.39
2 0.393 0.063 0.821
3 0.406 0.875 0.069
4 0.771 0.528 0.371
5 0.025 0.430 0.067
6 0.142 0.394 0.344
7 0.437 0.226 0.390
8 0.969 0.144 0.142
9 0.461 0.252 0.495
10 0.820 0.198 0.073

Table 4: USE volatility forecast accuracy.

Model MSE MAE
TSK Fuzzy -GARCH(1,1) 4.6080e-08 9.974e-05
ARMA(1,1)-GARCH(1,1) 1.47738e-04 8.5552e-03
ARMA(1,1)-TGARCH(1,1) 1.47736e-04 8.5554e-03
ARMA(1,1)-EGARCH(1,1) 1.4796e-04 8.5554e-03

4 Conclusion

This study forecasts stock returns volatility of USE using TSK Fuzzy-GARCH(1,1),
ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-TGARCH(1,1) models. The fore-
casting performance of the models is determined using MSE and MAE as the
two statistical error measures. Results obtained indicate that the TSK Fuzzy-
GARCH(1,1) models gives best forecast results.
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