Pure Mathematical Sciences, Vol. 8, 2019, no. 1, 11-16
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/pms.2019.9810

On the Norm of a Generalized Derivation

Odero Adhiambo Beatrice
Department of Mathematics, Statistics and Computing
Rongo University, P.O. Box 103-40404 Rongo, Kenya
J. O. Agure
Departmant of Pure and Applied Mathematics
Maseno University, P.O. Box 333, Maseno, Kenya
\section*{F. O. Nyamwala}
Department of Mathematics and Physics
Moi University, P.O. Box 3900-30100, Eldoret, Kenya

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

Let H be an infinite dimensional complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. For two bounded operators $A, B \in B(H)$, the map $\delta_{A B}: B(H) \rightarrow B(H)$ is a generalized inner derivation operator induced by A and B defined by $\delta_{A B}(X)=$ $A X-X B$ In this paper we show that the norm of a generalized inner derivation operator is given by $\left\|\left(\delta_{A B / B(B(H))}\right)\right\|=\|A\|+\|B\|$ for all $A, B \in B(H)$.

Mathematics Subject Classification: Primary 47A30, Secondary 47L25
Keywords: Generalized derivation, Norm, maximal numerical range and finite rank operators

Introduction

Definition: Generalized derivation

Let H be a separable infinite dimensional complex Hilbert space and let $B(H)$
denote the algebra of all bounded linear operators on H. Let $A, B \in B(H)$. The left and the right multiplication operators induced by A and B is denoted by L_{A} and R_{B} respectively and defined by $L_{A}(X)=A X$ and $R_{B}(X)=X B$. The generalized derivation $\delta_{A B}: B(H) \rightarrow B(H)$ is defined by $\delta_{A B}(X)=L_{A}-R_{B}(X)=A X-X B$ for all $X \in B(H)$.

Definition: Finite rank operator.

A bounded linear operator $T: A \rightarrow B$ between Banach spaces is said to be a finite rank operator if its range is finite dimensional. Let E be a complex Banach space and $x, y \in E$ be vectors, then for $(x, f) \in E \times E^{*}$ the finite rank operator $x \otimes f: E \rightarrow \mathbb{C}$ is given by $(x \otimes f)(y)=f(y) x$. If $E=H$ then for all $x, y \in H$ we define the finite rank operator by $(x \otimes y) z=\langle z, y\rangle x$ for all $z \in H$.

Definition: Maximal numerical range

Let $T \in B(H)$. The maximal numerical range of T is defined by the set $W_{o}(T)=\left\{\lambda:\left\langle T x_{n}, x_{n}\right\rangle \rightarrow \lambda\right.$ where $\left\|x_{n}\right\|=1$ and $\left.\left\|T x_{n}\right\| \rightarrow\|T\|\right\}$ where x_{n} is a sequence in H and $\lambda \in \mathbb{C}$.

Main result

Theorem 1

Let $A, B \in B(H)$ and $\delta_{A B}: B(H) \rightarrow B(H)$. Then
$\left\|\delta_{A B / B(H)}\right\|=\|A\|+\|B\|$.

Proof

By definition,

$$
\begin{aligned}
\left\|\delta_{A B / B(H)}\right\| & =\sup \left\{\left\|\delta_{A B}(X)\right\|: X \in B(H),\|X\|=1\right\} \\
& =\sup \{\|A X-X B\|: X \in B(H),\|X\|=1\} .
\end{aligned}
$$

Therefore,
$\left\|\delta_{A B / B(H)}\right\| \geq\left\|\delta_{A B}(X)\right\|$ for all $X \in B(H)$ and $\|X\|=1$.
Taking an arbitrary $\varepsilon>0$ we have
$\left\|\delta_{A B / B(H)}\right\|-\varepsilon<\left\|\delta_{A B}(X)\right\|$ for all $X \in B(H)$ and $\|X\|=1$. So
$\left\|\delta_{A B / B(H)}\right\|-\varepsilon<\|A X-X B\|$.
Since $\|A X-X B\| \leq\|A\|+\|B\|$ and letting $\varepsilon \rightarrow 0$, then we have that $\left\|\delta_{A B / B(H)}\right\| \leq\|A\|+\|B\|$.
On the other hand, let $s, y, z \in H$ be unit vectors. Let u, v be functionals so that $u \otimes y: H \rightarrow \mathbb{C}$ and $v \otimes z: H \rightarrow \mathbb{C}$ are finite rank operators defined by $(u \otimes y) s=u(s) y$ and $(v \otimes z) s=v(s) z$ for all $s \in H$ with $\|s\|=1$.
So $\|u \otimes y\|=\sup \{\|(u \otimes y) s\|: s \in H,\|s\|=1\}$
$=\sup \{\|u(s) y\|: s \in H,\|s\|=1\}$
$=\sup \{|u(s)|\|y\|: s \in H,\|s\|=1\}$
$=|u(s)|=\|u\|$

Similarly, $\|v \otimes z\|=|v(s)|=\|v\|$
So if we let $A=u \otimes y$ and $B=v \otimes z$, then $\|A\|=|u(s)|=\|u\|$ and $\|B\|=|v(s)|=\|v\|$.
Now,
$\left\|\delta_{A B / B(H)}\right\| \geq\left\|\delta_{A B}(X)\right\| \geq\left\|\delta_{A B}(X) s\right\|$ where $X \in B(H)$ with $\|X\|=1$.
But, $\delta_{A B}(X) s=(A X-X B)(s)=A X(s)-X B(s)$

$$
\begin{aligned}
& =((u \otimes y) X(s))-(X(v \otimes z))(s) \\
& =u(s) y X-X v(s) z \\
& =u(s) X(y)-X(z) v(s) .
\end{aligned}
$$

Therefore,
$\left\|\delta_{A B / B(H)}\right\|^{2} \geq\|(A X-X B)(s)\|^{2}$
$=\langle u(s) X(y)-X(z) v(s), u(s) X(y)-X(z) v(s)\rangle$
$=\langle u(s) X(y), u(s) X(y)\rangle-\langle u(s) X(y), X(z) v(s)\rangle-\langle X(z) v(s), u(s) X(y)\rangle+\langle X(z) v(s), X(z) v(s)\rangle$
$=\|u(s) X(y)\|^{2}-\langle u(s) X(y), X(z) v(s)\rangle-\langle X(z) v(s), u(s) X(y)\rangle+\|X(z) v(s)\|^{2}$
$=|u(s)|^{2}\|X(y)\|^{2}-(u X(y) X(z) v)\langle s, s\rangle-(X(z) v u X(y))\langle s, s\rangle+\|X(z)\|^{2}|v(s)|^{2}$
$=|u(s)|^{2}-u X(y) v X(z)-v X(z) u X(y)+|v(s)|^{2}$
$=\|u\|^{2}-u X(y) v X(z)-v X(z) u X(y)+\|v\|^{2}$.
Setting $u X(y)=|u X(y)|=\|A\|$, and
$v X(z)=-|v X(z)|=-\|B\|$ then we have that
$\|u\|^{2}-u X(y) v X(z)-v X(z) u X(y)+\|v\|^{2}=\|A\|^{2}+2\|A\|\|B\|+\|B\|^{2}$
$=\{\|A\|+\|B\|\}^{2}$.
Thus,
$\left\|\delta_{A B / B(H)}\right\|^{2} \geq\{\|A\|\|B\|\}^{2}$.
Taking square root on both sides we obtain
$\left\|\delta_{A B / B(H)}\right\| \geq\|A\|+\|B\|$.
Equations (2) and (3) together yields,
$\left\|\delta_{A B / B(H)}\right\|=\|A\|+\|B\|$.
We now proceed to show that the equality holds using Stampfli's maximal numerical range.
Let A be a bounded linear operator on $B(H)$. Then the distance $d(A)$ from A to the scalar multiple of the identity is given by
$d(A)=\inf \{\|A-\lambda\|: \lambda \in \mathbb{C}\}$.

Theorem 2

Let $d(A)=\inf \{\|A-\lambda\|: \lambda \in \mathbb{C}\}$ and $d(B)=\inf \{\|B-\lambda\|: \lambda \in \mathbb{C}\}$ the distance from A and B respectively to the scalar multiple of the identity. Then $\left\|\delta_{A B / B(H)}\right\|=\|A\|+\|B\|$

Proof.

For $\lambda \in \mathbb{C}$ and $X \in B(H)$ with $\|X\|=1$, we have

$$
\begin{aligned}
\delta_{A B}(X) & =A X-X B \\
& =(A-\lambda) X-X(B-\lambda) \| \text { for all } X \in B(H) \text { with } A, B \in B(H) \text { fixed. }
\end{aligned}
$$

So,

$$
\begin{aligned}
\left\|\delta_{A B}(X)\right\| & =\|(A-\lambda) X-X(B-\lambda)\| \\
& \leq(\|A-\lambda\|+\|B-\lambda\|)\|X\|
\end{aligned}
$$

Taking supremum with $\|X\|=1$ we obtain
$\left\|\delta_{A B} / B(H)\right\| \leq\|A-\lambda\|+\|B-\lambda\|$

$$
=d(A)+d(B)
$$

To show the reverse inequality we use the maximal numerical range.
For $A \in B(H)$ the maximal numerical range of A is given by $W_{o}(A)=\left\{\lambda \in \mathbb{C}:\left\langle A x_{n}, x_{n}\right\rangle\right\rangle \rightarrow \lambda$, with $\left\|x_{n}\right\|=1$ and $\left.\left\|A x_{n}\right\| \rightarrow\|A\|\right\}$.
The following lemma shows the relationship between $W_{o}(A), W_{o}(B)$ and $\left\|\delta_{A B}\right\|$.

Lemma 3

Let $\lambda_{1} \in W_{o}(A)$ and $\lambda_{2} \in W_{o}(B)$. Then
$\left\|\delta_{A B}\right\| \geq\left(\|A\|^{2}-\left|\lambda_{1}\right|^{2}\right)^{\frac{1}{2}}+\left(\|B\|^{2}-\left|\lambda_{2}\right|^{2}\right)^{\frac{1}{2}}$.

Proof.

By definition, $\left\|\delta_{A B} / B(H)\right\|=\sup \{\|A X-X B\|: X \in B(H)$ and $\|X\|=1\}$.
Since $\lambda_{1} \in W_{o}(A)$, there exists $x_{n} \in H$ such that $\left\|A x_{n}\right\| \rightarrow\|A\|$ and $\left\langle A x_{n}, x_{n}\right\rangle \rightarrow$ λ_{1}.
Also, for $\lambda_{2} \in W_{o}(B)$, there exists $x_{n} \in H$ such that $\left\|B x_{n}\right\| \rightarrow\|B\|$ and $\left\langle B x_{n}, x_{n}\right\rangle \rightarrow \lambda_{2}$.
We set $A x_{n}=\alpha_{n} x_{n}+\beta_{n} y_{n}$ and $B x_{n}=\alpha_{n} x_{n}+\omega_{n} y_{n}$ where $\left\langle x_{n}, y_{n}\right\rangle=0$ and $\left\|y_{n}\right\|=1$. Given that $V_{n} x_{n}=x_{n}, V_{n} y_{n}=-y_{n}$ and $V_{n}=0$ on $\left\{x_{n}, y_{n}\right\}$, then $\left\|\left(A V_{n}-V_{n} B\right) x_{n}\right\|=\left\|A V x_{n}-V_{n} B x_{n}\right\|$

$$
=\left\|A x_{n}-V_{n}\left(\alpha_{n} x_{n}+\omega_{n} y_{n}\right)\right\|
$$

$=\left\|A x_{n}-V_{n} \alpha_{n} x_{n}-V_{n} \omega_{n} y_{n}\right\|$
$=\left\|\alpha_{n} x_{n}+\beta_{n} y_{n}-\alpha_{n} x_{n}+\omega_{n} y_{n}\right\|$
$=\left\|\beta_{n} y_{n}+\omega_{n} y_{n}\right\|$
$=\left|\beta_{n}+\omega_{n}\right|$
$\leq\left|\beta_{n}\right|+\left|\omega_{n}\right|$.
But
$\left\|A x_{n}\right\|=\left\|\alpha_{n} x_{n}+\beta_{n} y_{n}\right\| \leq\left\|\alpha_{n} x_{n}\right\|+\left\|\beta_{n} y_{n}\right\|=\left|\alpha_{n}\right|+\left|\beta_{n}\right|$.
So $\left|\beta_{n}\right| \geq\left\|A x_{n}\right\|-\left|\alpha_{n}\right|$ and since $\left\|A x_{n}\right\| \rightarrow\|A\|$, then
$\left|\beta_{n}\right| \geq\left(\|A\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}-\varepsilon_{n}$ where $\varepsilon_{n} \rightarrow 0$ and $\alpha_{n} \rightarrow \lambda_{1}$.
Also,
$\left\|B x_{n}\right\|=\left\|\alpha_{n} x_{n}+\omega_{n} y_{n}\right\| \leq\left\|\alpha_{n} x_{n}\right\|+\left\|\omega_{n} y_{n}\right\|=\left|\alpha_{n}\right|+\left|\omega_{n}\right|$
So $\left|\omega_{n}\right| \geq\left\|B x_{n}\right\|-\left|\alpha_{n}\right|$ and since $\left\|B x_{n}\right\| \rightarrow\|B\|$ then $\left|\omega_{n}\right| \geq\left(\|B\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}-\varepsilon_{n}$ where $\varepsilon_{n} \rightarrow 0$ and $\alpha_{n} \rightarrow \lambda_{2}$
Thus

$$
\begin{aligned}
\left|\beta_{n}\right|+\left|\omega_{n}\right| & \geq\left(\|A\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}-\varepsilon_{n}+\left(\|B\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}-\varepsilon_{n} \\
& =\left(\|A\|^{2}-\left|\lambda_{1}\right|^{2}\right)^{\frac{1}{2}}+\left(\|B\|^{2}-\left|\lambda_{2}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Therefore,
$\left\|\delta_{A B}\right\| \geq\left\|\delta_{A B}\left(V_{n}\right)\right\| \geq\left\|\left(A V_{n}-V_{n} B\right) x_{n}\right\| \geq\left(\|A\|^{2}-\left|\lambda_{1}\right|^{2}\right)^{\frac{1}{2}}+\left(\|B\|^{2}-\left|\lambda_{2}\right|^{2}\right)^{\frac{1}{2}}$.
If λ_{1} and λ_{2} are as defined in lemma 3 and we let $\alpha_{n}=\left\langle A x_{n}, x_{n}\right\rangle \rightarrow \lambda_{1}$ and $\alpha_{n}=\left\langle B x_{n}, x_{n}\right\rangle \rightarrow \lambda_{2}$ so that
$\left|\alpha_{n}\right|^{2}+\left|\beta_{n}\right|^{2}=\left\|A x_{n}\right\|^{2} \rightarrow\|A\|^{2}$ that is, $\left|\beta_{n}\right|=\left(\left\|A X_{n}\right\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}$ and
$\left|\alpha_{n}\right|^{2}+\left|\omega_{n}\right|^{2}=\left\|B x_{n}\right\|^{2} \rightarrow\|B\|^{2}$ that is, $\left|\omega_{n}\right|=\left(\left\|B x_{n}\right\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}$.
Also, let $V_{n}=x_{n} \otimes x_{n}-y_{n} \otimes y_{n}$, then $\left\|V_{n}\right\|=1$ and
$\left(A V_{n}-V_{n} B\right) x_{n}=\beta_{n} y_{n}+\omega_{n} y_{n}$.
Then

$$
\begin{aligned}
\left\|\delta_{A B}\right\| \geq \|\left(A V_{n}-V_{n} B\right) & x_{n} \|=\left|\beta_{n}\right|+\left|\omega_{n}\right| \\
& =\left(\left\|A x_{n}\right\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}+\left(\left\|B x_{n}\right\|^{2}-\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& =\left(\left\|A x_{n}\right\|^{2}-\left|\left\langle A x_{n}, x_{n}\right\rangle\right|^{2}\right)^{\frac{1}{2}}+\left(\left\|B x_{n}\right\|^{2}-\left|\left\langle B x_{n}, x_{n}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \\
& \rightarrow\left(\|A\|^{2}-\left|\lambda_{1}\right|^{2}\right)^{\frac{1}{2}}+\left(\|B\|^{2}-\left|\lambda_{2}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Now, if $0 \in W_{o}(A)$ and $0 \in W_{o}(B)$ then we have that $\left\|\delta_{A B}\right\| \geq\|A\|+\|B\|$.
Furthermore, $\|A\|+\|B\| \leq\left\|\delta_{A B}\right\| \leq d(A)+d(B) \leq\|A\|+\|B\|$.
Thus, $\left\|\delta_{A B / B(H)}\right\|=\|A\|+\|B\| . \square$

References

[1] M. Boumazgour, An estimate for norm of a derivation on a norm ideal, Linear and Multilinear Journal, 54 (5) (2006), 321-327.
https://doi.org/10.1080/03081080500156854
[2] H. Du, Y. Wang and G. Gao, Norms of Elementary Operators, Proceedings of the American Mathematical Society, 136, no. 4 (2008), 1337-1348. https://doi.org/10.1090/s0002-9939-07-09112-5
[3] L. A. Fialkow, A Note on norm ideals and operator $a x-x b$, Israel Journal of Mathematics, 32 (4) (1979), 331-348. https://doi.org/10.1007/bf02760462
[4] L. A. Fialkow, Structural properties of elementary operators, in: Elementary Operators and Applications, 1992, 55-113.
[5] D.N. Kingangi, J.O. Agure and F.O. Nyamwala, On the norm of elementary operator, Advances in Pure Mathematics, 4 (2014), 309-316. https://doi.org/10.4236/apm.2014.47041
[6] G. Lumer and M. Rosenblum, Linear Operator Equations, Proc. Amer. Math. Soc., 10 (1959), 32-41. https://doi.org/10.1090/s0002-9939-1959-01041670
[7] G. Lumer, Semi-inner product spaces, Trans. American. Math. Soc., 100 (1961), 29-43. https://doi.org/10.1090/s0002-9947-1961-0133024-2
[8] M. Mathieu, More properties of the product of two derivations of C^{*} algebra, Canada Math. Bull., 42 (1990), 115-120.
https://doi.org/10.1017/s0004972700028203
[9] F.O. Nyamwala and J.O. Agure, Norms of Elementary Operators in Banach Algebras, International Journal of Mathematical Analysis, 2 (9) (2008), 411-424.
[10] G. Orland, On a class of operators, Proc. Amer. Math. Soc., 15 (1964), 75-80. https://doi.org/10.1090/s0002-9939-1964-0157244-4
[11] A. Seddik, Rank one operators and norm of elementary operators, Linear Algebra and its Applications, 424 (2007), 177-183. https://doi.org/10.1016/j.laa.2006.10.003
[12] L.L. Stacho and B. Zalar, On the norm of Jordan Elementary operators in standard operator algebras, Publications Mathematicae-Debrecen, 49 (1996), 127-134.
[13] J.G. Stampfli, The norm of a derivation, Pacific Journal of Mathematics, 33, no. 3 (1970), 737-747. https://doi.org/10.2140/pjm.1970.33.737
[14] R.M. Timoney, Norms of elementary operators, Irish Math. Soc. Bulletin, 46 (2001), 13-17.
[15] R.M. Timoney, Computing the norms of elementary operators, Illinois Journal of Mathematics, 47, no. 4 (2003), 1207-1226.
https://doi.org/10.1215/ijm/1258138100
[16] R.M. Timoney, Norms and CB norms of Jordan elementary operators, Bull. Sci. Math., 127 (2003), 597-609. https://doi.org/10.1016/s0007-4497(03)00046-0
[17] R.M. Timoney, Some formulae for norms of elementary operators, J. Operator Theory, 57 (1) (2007), 121-145.

Received: September 5, 2019; Published: September 25, 2019

