Application of Reduced Minimum Modulus and Minimum Modulus in an m-Isometry

Kai Zhang
College of Science, Tianjin University of Technology
Tianjin 300384, P.R. China

Meimei Song*
College of Science, Tianjin University of Technology
Tianjin 300384, P.R. China

Yuanchang Lin
College of Science, Tianjin University of Technology
Tianjin 300384, P.R. China

Copyright © 2014 Kai Zhang, Meimei Song and Yuanchang Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we study the relationship among \((m, \infty) - isometry\), minimum modulus and reduced minimum modulus. We also find that there is a similar relationship among \((m, p) - isometry\), minimum modulus and reduced minimum modulus.

Keywords: \((m, p)\)-isometry, \((m, \infty)\)-isometry, reduced minimum modulus, minimum modulus, bounded below
1 Introduction

A bounded linear operator T on a complex Hilbert space H is called an m-isometry if it satisfies

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{sk}T^k = 0
$$

These operators were introduced by Agler and were thoroughly studied by Agler and Stankus in a series of three paper [1],[2],[3].

Bayart introduced the definition of an (m, ∞)-isometric operator on a Banach space.

Definition 1.1. [4] Let X be a Banach space, $T \in L(X)$, m is a positive integer and $p \geq 1$ is real number, we say that T is an (m, p)-isometry, if for any $x \in X$,

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^k(x)\|^p = 0
$$

Philipp Hoffmann, Michael Mackey and Micheál Ó Searcoid extended the definition of (m, ∞)-isometry, to include $p = \infty$.

Definition 1.2. [5] Let X be a Banach space, T is a linear operator, m is a positive integer, we say that T is an (m, ∞)-isometry, if for any $x \in X$,

$$
\max_{k=0, \ldots, m} \|T^k(x)\| = \max_{\text{k even}} \max_{\text{k odd}} \|T^k(x)\|
$$

In this paper, first, we introduce the properties of an (m, ∞)-isometry. Secondary, we study the relationship among (m, ∞)-isometry, the minimum modulus and the reduced minimum modulus[6]. Finally, we get some results of an (m, p)-isometry, which like the results of an (m, ∞)-isometry.

2 Properties of (m, p)-isometry

Philipp Hoffmann, Michael Mackey and Micheál Ó Searcoid has introduced some properties of an (m, ∞)-isometry.

Proposition 2.1. [5] Let T be an (m, ∞)-isometry. Then there exists a norm on X, equivalent to $\|\cdot\|$, under which T is an isometry.
Proposition 2.2. [5] Let \(T \) be an \((m, \infty)\) – isometry. Then, for all \(n \in \mathbb{N} \) and all \(x \in X \),

\[
\|T^n(x)\| \leq \max_{k=0, \ldots, m} \|T^k(x)\|
\]

In particular, \(T \) is power bounded by \(C = \max_{k=0, \ldots, m} \|T^k\| \).

From this theorem, when \(n = 1 \), we know \((m, \infty)\) – isometry is bounded linear operator.

Proposition 2.3. [5] Let \(T \) is \((m, \infty)\) – isometry, then \(T \) is bounded below.

Now, we give a new property of an \((m, \infty)\) – isometry.

Proposition 2.4. Let \(T \) is \((m, \infty)\) – isometry and \(\sigma_{ap}(T) \) is the approximate point spectrum, then \(\theta \notin \sigma_{ap}(T) \).

Proof. If \(\theta \in \sigma_{ap}(T) \), there exists a \(\{x_n\} \in X \) and \(\|x_n\| = 1 \), such that \(\lim_{n \to \infty} \|T(x_n)\| = 0 \). From Proposition 2.1, we have that there exists a norm \(\|\cdot\|_* \), such that \(m\|x\| \leq \|x\|_* \leq M\|x\| (M > m > 0) \) and \(\|T(x)\|_* = \|x\|_* \). Then we get that \(m\|T(x_n)\| \leq \|T(x_n)\|_* = \|x_n\|_* \leq M\|T(x_n)\| \). And because \(\lim_{n \to \infty} \|T(x_n)\| = 0 \), we have that \(\lim_{n \to \infty} \|x_n\|_* = 0 \). But for \(m\|x_n\| \leq \|x_n\|_* \leq M\|x_n\| \), we deduce that \(\lim_{n \to \infty} \|x_n\| = 0 \). This contradict with \(\|x_n\| = 1 \), so \(\theta \notin \sigma_{ap}(T) \). \(\square \)

3 The minimum modulus and the reduced minimum modulus of an \((m, \infty)\) – isometry

We give the definition of The reduced minimum modulus and the minimum modulus.

Definition 3.1. [6] Let \(X \) be a Banach space, \(T \in L(X) \) and \(x \in X \). we call \(\mu(T) \) is the minimum modulus of \(T \), if

\[
\mu(T) = \inf_{\|x\| = 1} \|T(x)\|
\]

Definition 3.2. [6] Let \(X \) be a Banach space, \(T \in L(X) \) and \(x \in X \). we call \(\gamma(T) \) is the reduced minimum modulus of \(T \), if

\[
\gamma(T) = \begin{cases} \inf\{\|T(x)\||d(x, N(T)) = 1\} & \text{if } T \neq 0 \\ \infty & \text{if } T = 0 \end{cases}
\]
In the following, we study the relationship between \((m, \infty)\)\textit{-isometry} and minimum modulus.

Proposition 3.3. \([6]\) Let \(T \in L(X)\). If \(\mu(T) > 0\), then \(T\) is bounded below.

Now, we need two properties of an \((m, \infty)\)\textit{-isometry} in \([5]\). Later, we give the relation between \((m, \infty)\)\textit{-isometry} and minimum modulus.

Theorem 3.4. \([5]\) Let \(T\) is an \((m, \infty)\)\textit{-isometry}, then \(T\) is injective.

Theorem 3.5. \([5]\) Let \(T\) is an \((m, \infty)\)\textit{-isometry} and \(R(T)\) is the range of \(T\). Then \(R(T)\) is closed.

Theorem 3.6. Let \(T\) is an \((m, \infty)\)\textit{-isometry}. Then \(\mu(T) > 0\).

Proof. If \(\mu(T) = 0\), we have \(\inf_{\|x\|=1} \|T(x)\| = 0\). Then there exist \(\{x_n\}\) and \(\|x_n\| = 1\), such that \(\lim_{n \to \infty} \|T(x_n)\| = 0\), so \(\lim_{n \to \infty} T(x_n) = 0\). Since \(T\) is an \((m, \infty)\)\textit{-isometry}, so \(T\) is bounded below. From proposition 3.5, \(R(T)\) is closed. As \(R(T)\) is a linear subspace, thus \(R(T)\) is complete. And because \(X\) is Banach space, \(T\) is open operator. In addition, \(T\) is an \((m, \infty)\)\textit{-isometry}, so \(T\) is bounded below and then \(T\) is injective, Hence \(T^{-1}\) is linear continuous operator. Thus we have

\[
\lim_{n \to \infty} x_n = \lim_{n \to \infty} T^{-1}(T(x_n)) = T^{-1}(\lim_{n \to \infty} T(x_n)) = T^{-1}(\theta) = \theta
\]

This contradict with \(\|x_n\| = 1\). It means that \(\mu(T) \neq 0\), But \(\mu(T) \geq 0\), so \(\mu(T) > 0\). \(\square\)

As the following, we study the relationship between \((m, \infty)\)\textit{-isometry} and the reduced minimum modulus.

Let \(X\) be a Banach space, \(T \in L(X)\) and \(ker(T)\) is the kernel of \(T\). For any \([x] \in X/ker(T)\), we define \(\phi([x]) = T(x)\). Obviously, \(\phi\) is a map.

Proposition 3.7. \(\phi\) was as described above, then

1. \(\phi\) is a linear operator.
2. \(\phi\) is injective.
3. \(\phi\) is continuous.

Proof. (1)For any \([x_1], [x_2] \in X/ker(T)\),

\[
\phi([x_1] + [x_2]) = \phi([x_1 + x_2]) = T(x_1 + x_2) = T(x_1) + T(x_2) = \phi([x_1]) + \phi([x_2])
\]

\[
\phi(\alpha [x]) = \alpha T(x) = \alpha T(x) = \alpha [x]
\]

(2)For any \([x] \neq [\theta]\), we have that \(x \not\in ker(T)\). It is clearly that this implies that \(\phi[x] = T(x) \neq \theta\).
(3) Since T is continuous, there exists $\rho > 0$, such that $\|T(x)\| \leq \rho \|x\|$. It means that $\|\phi[x]\| \leq \rho \|x\|$. We deduce that

$$\|\phi[x]\| \leq \inf_{x' \in [x]} \rho \|x'\| = \rho \inf_{x' \in [x]} \|x'\| = \rho \|[x]\|$$

So ϕ is continuous.

\[\square\]

Remark 3.8. Since $d(x, \ker(T)) = \inf_{x' \in \ker(T)} \|x - x'\| = \|[x]\|$, when $T \neq \theta$, we have that $\gamma(T) = \inf \{\|T(x)\|d(x, \ker(T)) = 1\} = \inf \{\|\phi[x]\|\|[x]\| = 1\}$. This means that $\gamma(T) = \mu(\phi)$.

Theorem 3.9. Let X be a Banach space, $T \in L(X)(T \neq \theta)$ and $\mu(\phi)$ was as described above. If $\gamma(T) > 0$, then ϕ is bounded below.

Proof. For $\gamma(T) > 0$, we have that $\mu(\phi) > 0$. From proposition 3.3, we immediately get that ϕ is bounded below.

\[\square\]

Theorem 3.10. Let T is an (m, ∞)–isometry, then $\gamma(T) > 0$.

Proof. If $\mu(\phi) = 0$, we have $\inf_{\|[x]\| = 1} \|\phi([x])\| = 0$. Then there exist $\{[x]_n\}$ and $\|[x]_n\| = 1$, such that $\lim_{n \to \infty} \|\phi([x]_n)\| = 0$, so $\lim_{n \to \infty} \phi([x]_n) = 0$. For T is an (m, ∞)–isometry, so $R(T)$ is closed and then $R(\phi)$ is closed. And $R(\phi)$ is a linear subspace, thus $R(\phi)$ is complete. And because $X/\ker(T)$ is Banach space, ϕ is open operator. In addition, ϕ is injective, Hence ϕ^{-1} is linear continuous operator. Thus we have

$$\lim_{n \to \infty} [x]_n = \lim_{n \to \infty} \phi^{-1}(\phi([x]_n)) = \phi^{-1}(\lim_{n \to \infty} \phi([x]_n)) = \phi^{-1}(\theta) = \theta$$

This contradict with $\|[x]_n\| = 1$. It means that $\mu(\phi) \neq 0$. But $\mu(\phi) \geq 0$, so $\mu(\phi) > 0$. For $\gamma(T) = \mu(\phi)$, we have that $\gamma(T) > 0$.

\[\square\]

4 The minimum modulus and the reduced minimum modulus of an (m,p)–isometry

In this section, we study the results of an (m,p)–isometry, which were similary to the results of an (m, ∞)–isometry.

Theorem 4.1. Let X be a Banach space, $T \in L(X)$ and $x \in X$, if T is m-isometry and $\sigma_{ap}(T)$ is the approximate point spectrum, then $\theta \notin \sigma_{ap}(T)$.

Proof. If $\theta \in \sigma_{ap}(T)$, there exist x_n and $\|x_n\| = 1$, such that $\lim_{n \to \infty} T(x_n) = \theta$.

And T is continuous, we have that $\lim_{n \to \infty} T^k(x_n) = \theta(k = 1, 2, \cdots, m)$, then $\lim_{n \to \infty} \|T^k(x_n)\| = 0$. Thus $\|x_n\| = \sum_{k=1}^{m} (-1)^{m-k} \binom{m}{k}(m-k)\|T^k(x_n)\|^p \to \theta(n \to \infty)$. This contradict with $\|x_n\| = 1$, so $\theta \notin \sigma_{ap}(T)$.

\[\square\]
As the proof of theorem 3.11, we have

Theorem 4.2. Let X be a Banach space, $T \in L(X)$ and $x \in X$. $\gamma(T)$ is the reduce minimum modulus of T. If T is an m-isometry, then $\gamma(T) > 0$.

References

Received: November 21, 2014; Published: March 9, 2015