On RG – Algebra

R. A. K. Omar

Math. Dept. Faculty of Education
Ain Shams University
Roxy, Cairo, Egypt

Copyright © 2014 R. A. K. Omar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this paper we introduce the notion of RG-algebra which is a good generalization of some algebraic structures such as the medial (BCI\BCH-algebras), the BM and BF-algebras.

Keywords: congruences, ideal, homomorphism, BCK\BCI – algebras

1. Introduction

Iami and Iseki introduced the notions of the two algebraic structures BCK – algebra and BCI – algebra [2, 12]. BCK-algebra is now known as a proper subclass of the class of BCI – algebra. Hu and Li [8, 9] introduced the notion of BCH – algebra. Neggers and Kim [13] introduced the notion of d-algebra which is another generalization of BCK – algebra – Jun, Roh, and Kim [15] introduced the notion of BH – algebra which is a generalization of (BCK \ BCI) – algebras. In the present paper we introduce what we call RG – algebra which is a good generalization of the previous algebraic structures and study some of its basic properties. The purpose of this paper is derive some straightforward consequences relations between the RG-algebra and the abelian group which is related to it.

2. Preliminaries

In the sequel we introduce some needed definitions and results.
Definition (2.1): A BCI – algebra [5] is an algebra \((X; *, 0)\) of type \((2, 0)\) satisfying the following conditions: -
(i) \((x \ast y) \ast (x \ast z) \ast (z \ast y) = 0\)
(ii) \((x \ast (x \ast y)) \ast y = 0\)
(iii) \(x \leq x\).
(iv) \(x \leq y\) and \(y \leq x\) imply \(x = y\).
(v) \(x \leq 0\) implies \(x = 0\).

where \(x \leq y\) is defined by \(x \ast y = 0\). If (v) is replaced by \(0 \leq x\), \(\forall x \in X\) then the algebra is called BCK-algebra.

Definition (2.2): A BCH-algebra [9] is an algebra of type \((2, 0)\) satisfying the following conditions:

i) \(x \ast x = 0\).
ii) \(x \leq y\) and \(y \leq x\) imply \(x = y\).
iii) \((x \ast y) \ast z = (x \ast z) \ast y\), where \(x \leq y\) is and only if \(x \ast y = 0\).

Definition (2.3): A BCH-algebra is proper (cf [9]) if and only if does not satisfy the condition.

\[(x \ast y) \ast (x \ast z) \leq z \ast y\]

3. RG – algebra

In this article we introduce the notion of RG – algebra with some important results related to it.

Definition (3.1): An algebra \((X; \ast, 0)\) is called RG – algebra if the following axioms are satisfied:

i) \(x \ast 0 = x\).
ii) \(x \ast y = (x \ast z) \ast (y \ast z)\) \(\forall x, y, z \in X\)
iii) \(x \ast y = y \ast x = 0\) imply \(x = y\).

By (ii) above put \(y = 0\) we get \(x \ast 0 = (x \ast z) \ast (0 \ast z)\), also put \(x = 0\), then \(0 \ast 0 = (0 \ast z) \ast (0 \ast z)\) by (i) we have \(0 = (0 \ast z) \ast (0 \ast z)\), let \(0 \ast z = x\) then \(0 = x \ast x\), \(\forall x \in X\) also \((x \ast y) \ast z = (x \ast y) \ast (z \ast 0) = (x \ast z) \ast (y \ast 0) = (x \ast z) \ast y\).

Example (3.2): Let \(X = \{0, a, b, c\}\) and \((X, \ast)\) be the pair given by the table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; \ast, 0)\) is an RG – algebra.

Definition (3.3): A \((BCH \setminus BCI)\) – algebra is called medial (cf. [1]) if

\[(x \ast y) \ast (z \ast \mu) = (x \ast z) \ast (y \ast \mu), \forall x, y, z, \mu \in X.\]

Theorem (3.4): A \((BCH \setminus BCI)\) – algebra is medial if and only if

\[x \ast y = (x \ast z) \ast (y \ast z), \forall x, y, z \in X.\]

Proof: Let \(X\) be a medial \((BCH \setminus BCI)\) – algebra, then
\[(x \ast y) \ast (z \ast \mu) = (x \ast z) \ast (y \ast \mu), \quad \text{put } z = \mu\]

\[(x \ast y) \ast (z \ast z) = (x \ast z) \ast (y \ast z)\]

\[(x \ast y) \ast 0 = (x \ast z) \ast (y \ast z), \quad \text{then}\]

\[(x \ast y) = (x \ast z) \ast (y \ast z)\]

Conversely, let \((x \ast y) = (x \ast \mu) \ast (y \ast \mu), \quad \forall x, y, \mu \in X\), then

\[(x \ast y) \ast (z \ast \mu) = (((x \ast y) \ast 0) \ast (z \ast \mu)) = ((x \ast \mu) \ast (y \ast \mu)) \ast (z \ast \mu) = (x \ast z) \ast (y \ast \mu)\]

That is \(X\) is medial.

Proposition (3.5): In any RG-algebra the following hold:

i) \(0 \ast (y \ast x) = x \ast y\).

ii) \(0 \ast (0 \ast x) = x\).

iii) \(x \ast (x \ast y) = y\)

iv) \(x \ast y = (z \ast y) \ast (z \ast x) \quad \forall x, y, z \in X\).

v) \(x \ast y = 0 \quad \text{if and only if } y \ast x = 0\).

Proof:

i) \(0 \ast (y \ast x) = (0 \ast y) \ast (0 \ast x) = ((x \ast x) \ast y) \ast (0 \ast x) = (x \ast y) \ast (x \ast x) \ast 0 = x \ast y\).

ii) Put \(y = 0\) in (i) above \(0 \ast (0 \ast x) = x \ast 0 = x\).

iii) \(x \ast (x \ast y) = (x \ast 0) \ast (x \ast y) = (x \ast x) \ast (0 \ast y) = 0 \ast (0 \ast y) = y\).

iv) Using (i) above we have \(x \ast y = 0 \ast (y \ast x) = (z \ast z) \ast (y \ast x) = (z \ast y) \ast (z \ast x)\).

v) If \(x \ast y = 0\) then \(y \ast x = 0 \ast (x \ast y) = 0 \ast 0 = 0\), the converse is similar.

Proposition (3.6): Every RG-algebra is a BCI-algebra.

Proof: \(\forall x, y, z \in X\) we have:

\[((x \ast y) \ast (x \ast z)) \ast (z \ast y) = ((x \ast y) \ast (y \ast z)) \ast (z \ast y)\]

\[= 0 \ast (y \ast z) \ast (z \ast y)\]

\[= (z \ast y) \ast (z \ast y) = 0\]

Then \(X\) is a BCI-algebra.

The converse of this proposition may be not true.

Example (3.7): Let \(X = \{0, a, b, c\}\) in which \(*\) is defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>A</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>
Then \((X; *, 0)\) is a BCI–algebra but it is not an RG–algebra because \(0 * (b * c) = 0, \ c * b = a\) then \(0 * (b * c) \neq c * b\).

Example (3.8): Let \(X = \{0, 1, 2, 3\}\) in which \(*\) is defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; *, 0)\) is a BCH–algebra but is not an RG–algebra since \((1 * 3) * (2 * 3) = 3 * 2 = 0 \neq 3 = (1 * 2)\).

Proposition (3.9): In any RG – algebra \(X\) the following hold:

i) \((x * y) * (0 * y) = (x * (0 * y)) * y = x.\)

ii) \(x * (x * (x * y)) = x * y.\)

iii) \((x * y) * z = (x * y) * ((z * y) * (0 * y)) = ((x * z) * z) * (y * z) = ((x * y) * y) * (z * y) = (x * z) * y.\)

Proof: i) Since \(x = x * 0 = (x * 0) * (y * y) = (x * y) * (0 * y) = (x * (0 * y)) * y.\)

ii) From proposition (3.4), (iii) since \(y = x * (x * y),\) then \(x * y = x * (x * (x * y)).\)

iii) From (i) above; \(z = (z * y) * (0 * y),\) then \((x * y) * z = (x * y) * ((z * y) * (0 * y)),\) also \(((x * z) * z) * (y * z) = ((x * z) * (y * z)) * z = (x * y) * z.\) Finally \(((x * y) * y) * (z * y) = ((x * y) * (z * y)) * y = (x * z) * y = (x * y) * z.\)

Theorem (3.10): Let \((G, \lambda)\) be an abelian group then \((G, *, e)\) is an RG – algebra where \(e\) is the identity for the operation \(\lambda\) do as the zero of the operation \(*\) and \(x * y = x \lambda y^{-1}, \ \forall x, y \in G.\)

Proof: Let \(x, y, z \in G.\)

i) \(x * 0 = x \lambda e^{-1} = x \lambda e = x.\)

ii) Let \(x * y = y * x = 0.\) That is \(x \lambda y^{-1} = y \lambda x^{-1} = e,\) then \(x = e \lambda x = (y \lambda x^{-1}) \lambda x = y \lambda (x^{-1} \lambda x) = y \lambda e = y\)

iii) \((x * y) * (y * z) = (x \lambda z^{-1}) \lambda (y \lambda z^{-1})^{-1} = (x \lambda z^{-1}) \lambda (z \lambda y^{-1}) = x \lambda (z^{-1} \lambda z) \lambda y^{-1} = x \lambda e \lambda y^{-1} = x \lambda y^{-1} = x * y.\)

Corollary (3.11): Every \((Z_n; *, [0])\) is an RG – algebra.
\textbf{Proof:} From the last theorem take the operation \ast as the inverse of the addition mod n and $[0]$ stands as the zero in this algebra.

\textbf{Theorem (3.12):} Let $(X; 0, 0)$ be an RG – algebra in which $x \ast y \neq 0 \ \forall x \neq y$ in X then the system (X, λ) is an abelian group where the operation λ is defined as:

\[x \lambda y = x \ast (0 \ast y) \ \forall x, y \in X. \]

\textbf{Proof:} (i) \[x \lambda (y \lambda z) = x \lambda (y \ast (0 \ast z)) = x \ast (0 \ast (y \ast (0 \ast z))) = x \ast ((0 \ast y) \ast (0 \ast z))) \]

and

\[(x \lambda y) \lambda z = (x \ast (0 \ast y)) \ast (0 \ast z) = (x \ast 0) \ast ((0 \ast y) \ast y) = x \ast ((0 \ast y) \ast z). \]

That is \[(x \lambda y) \lambda z = x \lambda (y \lambda z) \]

which gives that λ is an associative.

ii) since $e \lambda x = 0 \ast (0 \ast x) = x$ and $x \lambda e = x \ast (0 \ast 0) = x \ast 0 = x$. So $0 \lambda x = x \lambda 0 = x$ which gives that the zero of the operation \ast play the role as the identity e for the operation λ.

iii) The inverse of $x \in X$ for the operation λ in $(X; 0, 0)$ is the element $(0 \ast x)$ since

\[x \lambda (0 \ast x) = x \ast (0 \ast (0 \ast x)) = x \ast x = 0 = e \]

and $(0 \ast x) \lambda x = (0 \ast x) \ast (0 \ast x) = 0 = e$.

iv) \[(x \lambda y) \ast (y \lambda x) = (x \ast (0 \ast y)) \ast (y \ast (0 \ast x)) \]

\[= (x \ast y) \ast ((0 \ast y) \ast (0 \ast x)) \]

\[= (x \ast y) \ast (x \ast y) = 0 \quad \text{and} \]

\[(y \lambda x) \ast (x \lambda y) = (y \ast (0 \ast x)) \ast (x \ast (0 \ast y)) \]

\[= (y \ast x) \ast (0 \ast (x \ast y)) = (y \ast x) \ast (y \ast x) = 0 \]

Then $x \lambda y = y \lambda x$. Therefore (x, λ) is an abelian group.

\textbf{Example (3.13):} Let $X = \{0, 1, 2, 3, 4, 5\}$ and the pair $(X; 0, 0)$ be given by the following table:

<table>
<thead>
<tr>
<th>\ast</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

It is an easy to verify that $(X; 0, 0)$ is an RG – algebra.

\textbf{Example (3.14):} The group (X, λ) according to theorem (3.12) arising from the RG – algebra in example (3.2) is given by the table:

<table>
<thead>
<tr>
<th>λ</th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>e</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>
Definition (3.15): A BCI – algebra \((X; *, 0)\) (cf. [1]) is called:
i) Weakly positive implicative if \((x * y) * z = ((x * z) * z) * (y * z)\).
ii) Weakly implicative if \((x * (y * x)) * (0 * (y * x)) = x\) as well as BCH – algebra.
iii) Weakly commutative if \((x * (x * y)) * (0 * (x * y)) = y * (y * x)\) as well as BCH – algebra.

While a BCH– algebra is called weakly positive implicative if \(x * y = ((x * y) * y) * (0 * y)\).

Proposition (3.16): Let \(X\) be an RG – algebra then the following hold:
i) \(X\) is weakly positive implicative.
ii) \(X\) is weakly commutative.
iii) \(X\) is weakly implicative.

Proof: (i) Comes soon from (3.9) if we regard \(X\) as a BCI – algebra and if we regard \(X\)
as a BCH – algebra from (3.9) (i); \(x = (x * y) * (0 * y)\), then \(x * y = ((x * y) * (0 * y)) * y = ((x * y) * y) * (0 * y)\) that is \(X\) is weakly positive implicative.

ii) Since \((x * (x * y)) * (0 * (x * y)) = ((x * 0) * (x * y)) * (0 * (x * y))\)

\[= ((x * x) * (0 * y)) * (0 * (x * y)) = (0 * (0 * y)) * (0 * (x * (x * y)))\]

\[= y * (y * x).\]
Therefore \(X\) is weakly commutative.

iii) Since \((x * (y * x)) * (0 * (y * x)) = (x * 0) * ((y * x) * (y * x)) = x * 0 = x.\)
Therefore \(x\) is weakly commutative.

4. Ideals and congruences in RG – algebra

In this article we introduce a definition of ideals in RG – algebra we notice that it is equivalent to the well known concept of ideals in (BCK \ BCI) – algebras and study the connections between such ideals and congruences.

Definition (4.1): A non – empty subset \(A\) of a (BCK \ BCI) – algebra \((X; *, 0)\) is called an ideal of \(X\) [cf [10, 11]] if:
i) \(0 \in A.\)
ii) \(x * y \in A\) and \(y \in A\) imply \(x \in A.\)

Definition (4.2): Let \((X; *, 0)\) be an RG – algebra, a non empty subset \(A\) of \(X\) is called an ideal of \(X\) if:
i) \(0 \in A.\)
ii) \(x * y \in A\) and \(0 * x \in A\) imply \(0 * y \in A\), \(\forall x, y \in X.\)

If \(A\) is an ideal in the RG – algebra \(X\), then the relation \(0\) on \(X\) defined by \(x0y\) if and only if \(x * y, y * x \in A\) is called the relation defined by the ideal \(A.\)

Lemma (4.3): In an RG – algebra \(X\) every RG – ideal is a BCK – ideal.

Proof: Let \(A\) be an ideal in an RG – algebra \(X\), then \(0 \in A\) and if \(x * y \in A, y \in A\) then \(0 * y \in A\) and \(x = x * 0 = x * (y * y) = (x * y) * (0 * y)\) since \(x * y, 0 * y \in A\), then \(x \in A.\) That is \(A\) is a BCK – ideal.

Lemma (4.4): In a BCK – algebra any BCK – ideal is an RG – ideal.
On RG – algebra

Proof: Let \(A \) be a BCK – ideal in the BCK–algebra \(X \), then \(0 \in A \) and whenever \(x \ast y \in A \), then \(0 \ast x = 0 \ast y = 0 \), so \(0 \ast x, 0 \ast y \in A \), that is \(A \) is an RG – ideal.

Lemma (4.5): In any RG – algebra any BCK – ideal is an RG – sub algebra.

Proof: Let \(A \) be a BCK – ideal in an RG – algebra \(X \), then \(0 \in A \) and \(\forall x, y \in X; (x \ast y) \ast x = 0 \ast y \). Thus for all \(x, y \in A \) then \((x \ast y) \ast x = 0 \ast y \in A \), now since \(x \in A \), \(0 \ast y \in A \), then \(x \ast y \in A \). Therefore \(A \) is an RG – sub algebra of \(X \).

Corollary (4.6): Any RG – ideal in an RG – algebra \(X \) is an RG – sub algebra of \(X \).

Proof: Comes soon from (4.3) and (4.5).

Theorem (3.7): Let \(A \) be an ideal in an RG – algebra \(X \), if \(x0y \in A \) and \(x \in A \), then \(y \in A \).

Proof: Let \(x0y \) then \(x \ast y, y \ast x \in A \). For any \(x \in X; x = x \ast 0 = x \ast (y \ast y) = (x \ast y) \ast (0 \ast y) \). Now if \(x \in A \), then \(x = (x \ast y) \ast (0 \ast y) \in A \) but since \(y \ast x \in A \), \(y \ast x = 0 \ast (x \ast y) \in A \), then \(0 \ast (0 \ast y) = y \in A \).

Theorem (3.8): Let \(A \) be an ideal in an RG – algebra \(X \), then the relation defined in (4.2) is a congruence on \(X \).

Proof: It is clear that the relation \(0 \) defined on \(X \) is reflexive and symmetric. To show that it is transitive let \(x0y \) and \(y0z \) then \(x \ast y, y \ast z, z \ast y \in A \), but \(x \ast z = (x \ast y) \ast (z \ast y) \) and \(z \ast x = (z \ast y) \ast (x \ast y) \) then using (4.6) we get \(x \ast z, z \ast x \in A \). That is \(\theta \) is transitive and hence \(\theta \) is an equivalence relation.

Now let \(x0a, y0b \) then \(x \ast a, a \ast x, y \ast b, b \ast y \in A \) but since \(X \) is an RG – algebra then \((x \ast y) \ast (a \ast b) = (x \ast a) \ast (y \ast b) \) and \((a \ast b) \ast (x \ast y) = (a \ast x) \ast (b \ast y) \). This gives that \((x \ast y) \ast (a \ast b), (a \ast b) \ast (x \ast y) \in A \) hence \((x \ast y) \theta (a \ast b) \). Therefore \(\theta \) is a congruence.

If the relation \(0 \) is a congruence on an RG – algebra \(X \) then \(C_0 = \{ y \in X : x0y \} \) is the equivalence class of \(x \in X \) and the family \(\{ C_x : x \in X \} \) form a partition of \(X \) which is always denote by \(X \) \(\theta \). On \(x \theta 0 \) we define \(C_x \ast C_y = C_{xy} \forall x, y \in X \). Since \(0 \) has the substitution property then the operation \(0 \) is well defined on \(x \theta 0 \). It is easy to verify that \((x \theta 0, \ast, C_0) \) satisfies all the axioms of the RG – algebra except (1.3), (iii). If the \(x \theta 0 \) holds for all the classes \(C_y \in x \theta 0 \) that is if the system \((x \theta 0, \ast, C_0) \) is an RG – algebra then the congruence \(0 \) is called regular.

Theorem (4.9): if \(0 \) is a congruence on an RG – algebra \(X \) then \(C_0 = \{ x \in X : x00 \} \) is an ideal of \(X \).

Proof: It is clear that \(0 \in C_0 \), let \(x,y \in X \) be such that \(x \ast y, 0 \ast x \in C_0 \) then \((0, 0) \in 0 \), \((x \ast y, 0) \) \(0 \in 0 \) but since \(y \ast x = 0 \ast (x \ast y) \) then \((y \ast x, 0) \in 0 \). Now \((0 \ast x) \ast (y \ast x)00 \) which give \((0 \ast y) \ast (x \ast x)00 \) that is \((0 \ast y)00 \). So \(0 \ast y \in C_0 \) and hence \(C_0 \) is an ideal of \(X \).

Note that \(C_0 = A \) for any congruence \(0 \) defined by the relation that mentioned in (4.2). Then as a consequence of this result we get:

Corollary (4.10): Any ideal in any RG – algebra \(X \) can be determined by some congruence.
Corollary (4.11): The lattice of all congruences of an RG – algebra \(X \) is a complete lattice where the least one is defined by the ideal \(\{0\} \) and the greatest by all \(X \).

Theorem (4.12): A congruence on an RG – algebra \(X \) is regular if and only if it is defined by some RG – ideal.

Proof: Let \(\theta_A \) be a congruence defined by an RG – ideal \(A \). Then \(A_0 = A \) and \(A_{x+y} = A_0 = A_{x+y} \) thus \(x \ast y, y \ast x \in A \) which means that \(x \theta_A y \) and \(A_x = A_y \). Therefore the congruence defined by the ideal \(A \) is regular.

Now let \(\theta \) be an arbitrary regular congruence and \(x \theta y \) then \((x \ast y)00 \) and \((y \ast x)00 \) but since \(\theta \) is reflexive then \(C_{x+y} = C_0 = C_{y+x} \) and \(x \ast y, y \ast x \in C_0 \) with \(C_0 = A \) is an ideal in the RG – algebra \(X \) that is \(\theta \leq \theta_A \).

Conversely let \((x \ast y) = (y \ast x) \) then \(x \ast y, y \ast x \in A = C_0 \) and \(C_x \ast C_y = C_0 = C_y \ast C_x \) which implies that \(C_x = C_y \) because \(\theta \) is regular thus \(x \theta y \).

Corollary (4.13): All congruences of a finite RG – algebra are regular and the theory of universal algebra yields.

Theorem (4.14): if \(\rho, \sigma \) are two congruences on an RG – algebra \(X \) then \(\rho \theta \sigma \) is a congruence on \(X \) if and only if \(\rho \ast \sigma = \sigma \ast \rho \).

5. Special elements in an RG – algebra

Here we introduce some special elements which satisfy a certain conditions in the RG – algebra and study some of their important properties.

Definition (5.1): An element \(a \) in an RG – algebra \(X \) is called a medial element if it satisfies the condition \((x \ast a) \ast x = a, \forall x \in X\). The set of all medial elements in \(X \) is denoted by \(M(X) \).

Proposition (5.2): Let \(X \) be an RG – algebra and \(M(X) \) be the set mentioned above then the following hold:

i) \(0 \in M(X) \).

ii) \(a \in M(X) \) if and only if \((x \ast a) \ast x \in M(X)\).

iii) \(a \in M(X) \) if \(0 \ast a = a \).

iv) \(a \in M(X) \) if \((a \land x) \in M(X) \).

v) If \(a \in M(X) \) then \(a \ast (0 \ast y) = y \ast a \) \(\forall y \in X \).

vi) If \(a, b \in M(X) \) then \(a \ast b = b \ast a \).

Proof: (i) since \(\forall x \in X \) we have \((x \ast 0) \ast x = (x \ast x) \ast 0 = 0 \ast 0 = 0 \) then \(0 \in M(X) \).

(ii) Let \(a \in M(X) \), then \((x \ast a) \ast x = a \) and \(\forall y \in X \) we have \((y \ast ((x \ast a) \ast x)) \ast y = (y \ast y) \ast ((x \ast a) \ast x) = 0 \ast (0 \ast a) = a = (x \ast a) \ast x \), this give \((x \ast a) \ast x \in M(X) \)

Conversely let \((x \ast a) \ast x \in M(X) \), then \(\forall y \in X \) we have:

\((y \ast (x \ast a) \ast x) \ast y = (x \ast a) \ast x \ast a = (x \ast a) \ast x, \) then \(a \in M(X) \).

(iii) Let \(a \in M(X) \), then from the definition \((x \ast a) \ast x = a, \forall x \in X \) that is \(0 \ast a = a \).
Conversely let \(0 \ast a = a \), then \(\forall x \in X \) we have
\[(x \ast a) \ast x = (x \ast (0 \ast a)) \ast x = (x \ast x) \ast (0 \ast a) = 0 \ast (0 \ast a) = a\]
that is \(a \in M(X) \).

iv) Let \(a \in M(X) \), then \(\forall y \in X \) we have
\[(y \ast (a \land x)) \ast y = (y \ast (x \ast (x \ast a))) \ast y = (y \ast y) \ast (x \ast (x \ast a))\]
\[= 0 \ast (x \ast (x \ast a)) = (x \ast a) \ast x = a\]
But \(a \in M(X) \), then \((y \ast (a \land x)) \ast y) \in M(X) \). According to (ii) above we have \(a \land x \in M(X) \).

Conversely let \(a \land x \in M(X) \), then
\[(y \ast (a \land x)) \ast y = a \land x = x \ast (x \ast a) = (x \ast x) \ast (0 \ast a) = 0 \ast (0 \ast a) = a\]
But \((a \land x) \in M(X) \), then \(a \in M(X) \).

v) Let \(a \in M(X) \), then \(a \ast (0 \ast y) = (0 \ast a) \ast (0 \ast y) = (0 \ast 0) \ast (a \ast y) = 0 \ast (a \ast y) = y \ast a \).

vi) Let \(a, b \in M(X) \), then \(0 \ast a = a, 0 \ast b = b \), then
\[a \ast b = (0 \ast a) \ast (0 \ast b) = (0 \ast 0) \ast (a \ast b) = 0 \ast (a \ast b) = b \ast a.\]

Definition (5.4): A BCI–algebra \(X \) is called quasi right alternate (cf [12]) if \(x \ast (y \ast y) = (x \ast y) \ast y \).

Lemma (5.5): Let \(X \) be an RG – algebra such that \(M(X) = X \) then \(X \) is a quasi right alternate. Moreover \(x \ast y = y \ast x \ \forall x, y \in X \).

Proof: Let \(X \) be an RG - algebra and \(M(X) = X \) for any \(x, y \in X \); \(x, y \in M(X) \) then
\[x \ast (y \ast y) = (x \ast 0) \ast (y \ast y) = (x \ast y) \ast (0 \ast y) = (x \ast y) \ast y.\]

Similarly \(y \ast (x \ast y) = (y \ast x) \ast x \). That is \(X \) is a quasi right alternate and \(x \ast y = (0 \ast x) \ast (0 \ast y) = 0 \ast (x \ast y) = y \ast x \).

It is well noting that the RG – algebra \((X; \ast, 0)\) constructed in example (3.2) is an algebra satisfying \(M(X) = X \).

Theorem (5.6): Let \((X, \ast, 0)\) be an RG – algebra then the set \(M(X) \) is an RG – ideal in \(X \).

Proof: Clearly \(0 \in M(X) \) let if \(x, y \in X \) be two elements such that \(x \ast y, 0 \ast x \in M(X) \), then \(0 \ast x = x \in M(X) \) and \(0 \ast y = (x \ast x) \ast y = (x \ast y) \ast x = (0 \ast (x \ast y)) \ast (0 \ast x) = (y \ast x) \ast (0 \ast x) = y \ast (x \ast x) = y \ast 0 = y \), that is \(y \in M(X) \), but since \(0 \ast y = y \) then \(0 \ast y \in M(X) \) and hence \(M(X) \) is an ideal of \(X \).

Proposition (5.7): Let \((X; \ast, 0)\) be an RG – algebra then the set \(M(X) \) is a sub – algebra of \(X \).

Proof: Let \(M(X) \) be the set of all medial elements in the RG-algebra \(X \) and \(x, y \in X \) be such that \(x, y \in M(X) \), then \(0 \ast x = x \) and \(0 \ast y = y \), now
\[0 \ast (x \ast y) = (0 \ast x) \ast (0 \ast y) = x \ast y.\]
That is \(x \ast y \in M(X) \) and hence \(M(X) \) is a subalgebra of \(X \).

Lemma (5.8): Let \((X; \ast, 0)\) be an RG – algebra such that \(M(X) = X \) then \(\forall x \in X \) the subset \(A = \{0, x\} \) is an RG – ideal (subalgebra) of \(X \).

Theorem (5.9): Let \((X; \ast, 0)\) be an RG – algebra, then \(0 \ast x = x, \forall x \in X \) if and only if \(x \ast (y \ast z) = (x \ast y) \ast z \ \forall x, y, z \in X \) and \((X; \ast, 0)\) is a group in which every element is involution.

Proof: Let \(x \ast (y \ast z) = (x \ast y) \ast z \ \forall x, y, z \in X \), take \(x = y = 0 \), the \(0 \ast (0 \ast 0) = (0 \ast 0) \ast 0 \) then \(z = 0 \ast z \), conversely if \(0 \ast x = x \), then
(x * y) * z = (x * y) * (0 * z) = (x * 0) * (y * z) = x * (y * z).

Definition (5.10): Two elements \(x, y \) in an RG-algebra \((X; \ast, 0)\) are said to be conjugate to each other if they satisfy the condition \((x \ast y) \ast x = x\). The collection of all elements that conjugate to an element \(x \in X \) is denoted by \(C(x) \). From this definition it is clear that if \(y \in C(x) \) then \(0 \ast y = x \).

Lemma (5.11): Let \((X; \ast, 0)\) be an RG – algebra the following statements hold:

i) \(0 \in C(0) \).

ii) \(y \in C(x) \) if and only if \(x \in C(y) \).

iii) \(x \in M(X) \) if and only if \(x \in C(x) \).

iv) \(x \in C(y) \) implies to \(x \wedge y \in C(y) \).

v) \(x \in C(y) \) and \(y \in C(z) \) then \(x = z \).

Proof: (i) since \(\forall x \in X; (x \ast 0) \ast x = 0 \), then \(0 \in C(0) \).

(ii) Let \(y \in C(x) \), then \(0 \ast y = x \) and \(0 \ast x = 0 \ast (0 \ast y) = y \) that is \(x \in C(y) \). Similarly \(x \in C(y) \) then \(y \in C(x) \).

(iii) Let \(x \in M(X) \), then \(0 \ast x = x \) and hence \(x \in C(x) \). Conversely let \(x \in C(x) \), then \((x \ast x) \ast x = x\), so \(0 \ast x = x \) which give \(x \in M(X) \).

(iv) Let \(x \in C(y) \) then \(0 \ast x = y \), so \(0 \ast (x \wedge y) = 0 \ast (y \ast (y \ast x)) = (y \ast x) \ast y = (0 \ast x) = y \). Therefore \(x \wedge y \in C(y) \).

(v) Let \(x \in C(y) \) and \(y \in C(z) \) then \(0 \ast x = y \) and \(0 \ast y = z \), now \(x = 0 \ast (0 \ast x) = 0 \ast y = z \).

6. Homomorphism and some maps on RG – algebras

Definition (1.6): Let \((X; \ast, 0), (Y, \ast, 0)\) be two RG – algebras. A mapping \(f : X \rightarrow Y \) is called a homomorphism if \(f(x \ast y) = f(x) \ast f(y) \); \(x, y \in X \) and is called an antihomomorphism if \(f(x \ast y) = f(y) \ast f(x) \). If \(f \) is a homomorphism then \(\ker f = \{ x \in X : f(x) = 0 \} \) and \(f(0) = 0 \).

Lemma (6.2): Let \(f : X \rightarrow Y \) be an epimorphism of RG – algebras then \(f \) maps medial elements (conjugate elements) in \(X \) onto medial (conjugate) elements in \(Y \).

Proof: Let \(a \in M(X) \), then \((x \ast a) \ast x = a, \forall x \in X \) and \(f((x \ast a) \ast x) = f(x \ast a) \ast f(x) = f(a) \) then \(f(f(x) \ast f(a)) \ast f(x) = f(a) \). That is \(f(x) \in M(Y) \). Now if \(y \in C(x) \) then \(0 \ast y = x \) and \(f(0 \ast y) = f(x) \), then \(f(0) \ast f(y) = f(x) \); \(0 \ast f(y) = f(x) \). That is \(f(y) \in C(f(x)) \).

Definition (6.3): Let \(X \) be an RG – algebra, for a fixed \(a \in X \) the map \(R_a : X \rightarrow X \) defined by \(f_a(x) = x \ast a; x \in X \) is called a right map on \(X \). The set of all right maps on \(X \) is denoted by \(R(X) \). The left map on \(X \) is defined dually and is denoted by \(L_a(x) = a \ast x, x \in X \). The set of all left maps on \(X \) is denoted by \(L(X) \).

Definition (6.4): A right map is called an idempotent if \(R_o R_a = R_a \) that is \((x \ast a) \ast a = (x \ast a)\), dually the left map.
Lemma (6.5): The left and right maps on an RG – algebra are homomorphism if and only if \(a = 0 \).

Definition (6.6): Let \(X \) be an RG–algebra. For a fixed \(a \in X \) the map \(R'_a : X \mapsto X; x \mapsto (x * a) * a \) is called a weak right self–map while \(L'_a : X \mapsto X; x \mapsto a * (a * x) \) is called a weak left self – map. The last map is identical to the identity map on \(X, \forall a \in X \).

Proposition (6.7): For any RG – algebra \(X \) we have

i) \(L_a^2 \) is the identity map on \(X \).

ii) Every weak left self map is an idempotent.

iii) \(R_a^2 = R'_a \).

Proof: Straight forward.

Proposition (6.8): Let \((X; *, 0)\) be an RG – algebra then the following hold:

i) \(R_a(x) * R_a(y) = L_a(y) * L_a(x) = x * y \).

ii) \(L_a(x) * L_a(y) = R_a(y) * R_a(x) = x * y \).

(iii) \((L_a \circ R_a)(x) = L_a(x) * R_a(0) = L_a(x) \quad \text{if} \quad a \in M(X) \)

(iv) \((R_a \circ L_a)(x) = L_a(x) \quad \text{if} \quad a, x \in M(X) \)

(v) \((L_a \circ R'_a)(x) = L_a(x) \quad \text{if} \quad a \in M(X) \)

(vi) \((R'_a \circ L_a)(x) = L_a(x) \quad \text{if} \quad a \in M(x) \quad \text{or} \quad x \in M(X) \)

Example (5.9): Let \(X = \{0, a, b\} \) and \((X; *, 0)\) be the algebra given by the table.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; *, 0)\) is an RG – algebra and \(M(X) = \{0\}, C(a) = \{b\}, C(b) = \{a\} \).

In example (3.13) we have \(M(X) = \{0,3\}, C(0) = \{0\}, C(1) = \{5\}, C(2) = \{4\}, C(3) = \{3\}, C(4) = \{2\}, C(5) = \{1\} \).

References

Received: November 11, 2013