Some Properties on Morphic Groups

Rabah Kellil

Zulfi College of Sciences
Majmaah University
Saudi Arabia
kellilrabah@yahoo.fr

Copyright © 2013 Rabah Kellil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The paper must have abstract. In this paper we continue the investigations on morphic groups. We also show that if a group is normally uniserial and of order p^3 with p prime it must be morphic and so give a negative answer to one of the questions of [4]. We characterize the morphic groups of order p^3 with p an odd prime. We also explore the set of subgroups of a morphic group which still morphic by restriction. We also show that if a group is normally uniserial and of order p^3 with p prime it must be morphic.

Mathematics Subject Classification: 20E34

Keywords: morphic groups, morphic morphism, semidirect product, stability, cyclic

1 Introduction

A morphism α from a group G_1 to a group G_2 is called dualizable if there exists a morphism β from G_2 to G_1 such $\ker \alpha = \beta(G_2)$ and $\ker \beta = \alpha(G_1)$. In cases where $G_1 = G_2$ these morphisms are called morphic. A group G is called morphic if every endomorphism ϕ of G for which $\phi(G)$ is normal in G satisfies $G/\phi(G) \cong \ker \phi$. This condition for modules was introduced in 1976 by Gertrude Ehrlich [2]. It arose in her characterization of when the endomorphism ring of a module is unit regular. A group-theoretic version of
Ehrlich’s theorem is given in [3]. The condition $M/\phi(M) \simeq \ker\phi$ was studied in the context of rings in [5], and then for modules in [6]. In the present paper we continue the investigations of [4] on morphic groups. We give several examples of morphic and non morphic groups, generalize some results on finite groups and give an explicit proof showing that a dihedral group D_n is morphic if and only if n is odd. We also give a negative answer to the question whether an uniserial group of length three is morphic?

2 Preliminary Notes

If G, G_1, G_2 are groups, we write $\text{end}(G)$ (resp $\text{mor}(G_1, G_2)$) for the monoid of endomorphisms $\phi : G \to G$ (resp for the set of morphisms $\phi : G_1 \to G_2$); and we write $\text{aut}(G)$ (resp $\text{iso}(G_1, G_2)$) for the group of automorphisms of G (resp the set of isomorphisms from G_1 to G_2). As usual, we write $H \triangleleft G$ to indicate that H is a normal subgroup of G; we write $Z = Z(G)$ for the centre of G; and we write G' for the commutator (or derived) subgroup of G. We write Z_n for the commutative groupe $\mathbb{Z}/n\mathbb{Z}, C_n$ for the cyclic group of order n; and D_n for the dihedral group of order $2n$. If H and K are subgroups of G; we write $G = H \odot K$ to mean that $H \triangleleft G; K \triangleleft G; G = HK$ and $H \cap K = 1$ and in this case we say that H and K are direct factors of the group G. We say that G is a semidirect product of K by H; and we write $G = K \rtimes H$; if $K \triangleleft G; G = KH$ and $H \cap K = 1$ in this case we say that K is a semidirect factor of G:

3 Morphic endomorphisms and morphic groups

We begin with some characterizations of the group morphisms and endomorphisms of interest here.

Definition 3.1 If G_1, G_2 are groups; $\phi \in \text{mor}(G_1, G_2)$ is called normal if $\phi(G_1)$ is normal in G_2.

Examples 3.2

1. If H is a normal subgroup of a group G then the inclusion map $i : H \to G$ is a normal morphism.

2. Every onto groups morphism is normal.

3. If in the definition G_2 is abelian then ϕ is normal.

Lemma 3.3.

If G_1, G_2 are groups and $\phi \in \text{mor}(G_1, G_2)$, the following are equivalent:

1. $\phi(G_1) \triangleleft G_2$ and $G_2/\phi(G_1) \simeq \ker\phi$.

2. There exists \(\beta \in \text{mor}(G_2, G_1) \) with \(\ker \phi = \beta(G_2) \) and \(\phi(G_1) = \ker \beta \).

3. There exists \(\beta \in \text{mor}(G_2, G_1) \) with \(\ker \phi \simeq \beta(G_2) \) and \(\phi(G_1) = \ker \beta \).

Proof 3.4.

1. \(1 \) \(\implies \) \(2 \) Let \(f : G_2/\phi(G_1) \to \ker \phi \) be an isomorphism and set \(\beta : G_2 \to G_1 \) such \(\beta(g) = f(\overline{g}) \). It is easy to prove that \(\beta \) is well defined and a group morphism. We also have \(\beta(G_2) = f(G_2/\phi(G_1)) = \ker \phi \) because \(f \) is an isomorphism. In the other side \(\ker \beta = \{ g \in G_2 \mid \beta(g) = 1 \} = \{ g \in G_2 \mid f(\overline{g}) = 1 \} = \phi(G_1) \).

2. \(2 \) \(\implies \) \(3 \) is trivial.

3. \(3 \) \(\implies \) \(1 \) Let \(\beta : G_2 \to G_1 \) be a morphism as in \(3 \), then \(G_2/\ker \beta \simeq \beta(G_2) \) but \(\phi(G_1) = \ker \beta \triangleleft G_2 \) and \(G_2/\phi(G_1) = G_2/\ker \beta \simeq \beta(G_2) \simeq \ker \phi \).

Definition 3.5 \(\phi \in \text{end}(G) \) is called morphic if it satisfies one of the conditions of the lemma 2.2. We also have that every automorphism of \(G \) and the trivial endomorphism are morphic by (1) of the same lemma.

Definition 3.6 A group \(G \) is called morphic if every endomorphism \(\phi \) of \(G \) for which \(\phi(G) \) is normal in \(G \) is morphic.

Proposition 3.7 Let \(G_1, G_2 \) be two isomorphic groups. If \(G_1 \) is morphic so is \(G_2 \).

The proof bellow can seem redundant but we give it as an illustration.

Proof 3.8 Let \(f : G_1 \to G_2 \) be an isomorphism and \(\beta : G_2 \to G_2 \) be an endomorphism such \(\beta(G_2) \triangleleft G_2 \). We have to prove that \(G_2/\beta(G_2) \simeq \ker \beta \), \(f^{-1} \circ \beta \circ f \) is in \(\text{end}(G_1) \) and is such \(f^{-1} \circ \beta \circ f(G_1) = f^{-1}(\beta(G_2)) \triangleleft G_1 \). But \(G_1 \) is morphic so

\[
G_1/(f^{-1} \circ \beta \circ f)(G_1) \simeq \ker(f^{-1} \circ \beta \circ f).
\]

Let

\[
\Psi : G_1 \to G_2/\beta(G_2), \quad x \mapsto \overline{f(x)}.
\]

\(\Psi \) is a group morphism and surjective so \(G_1/\ker \Psi \simeq G_2/\beta(G_2) \). But \(\ker \Psi = \beta(G_1) \) so, \(G_1/\beta(G_1) \simeq G_2/\beta(G_2) \).

Let \(x \in \ker(f^{-1} \circ \beta \circ f) \) so \(1 = (f^{-1} \circ \beta \circ f)(x) = f^{-1}(\beta(f(x))) \) and \(\beta(f(x)) \in \ker f^{-1} = 1 \) and then \(f(x) \in \ker \beta \) so the group morphism :

\[
\Phi : \ker(f^{-1} \circ \beta \circ f) \to \ker \beta, \quad x \mapsto \overline{f(x)}.
\]
is well defined. In addition we have ker Φ = 1 and if y ∈ ker β and because y is
in G₂ there exists x ∈ G₁ such y = f(x). But (f⁻¹ ∘ β ∘ f)(x) = f⁻¹(β(f(x))) =
f⁻¹(β(y)) = f⁻¹(1) = 1 so x ∈ ker(f⁻¹ ∘ β ∘ f) and Φ is an isomorphism. In
conclusion we have :

\[G₂/β(G₂) \cong G₁/f⁻¹(β(f(G₁))) \cong ker(f⁻¹ ∘ β ∘ f) \cong ker β. \]

And G₂ is then morphic.

The example below has been treated in [4] for the case n = 2

Example 3.9 Let G denote the group \(C_n \times C_{2n} \), where \(C_n = \langle a \rangle \) and \(C_{2n} = \langle b \rangle \) then :

1. there exists a morphic endomorphism of G.
2. G is not morphic.
3. In Lemma 2.2, we cannot replace (3) by: “There exists β ∈ end(G) such that ker φ = β(G) and φ(G) ≃ ker β
4. The composite of morphic endomorphisms need not be morphic.

Proof 3.10 1. Let \(α, f : C_n \times C_{2n} \longrightarrow C_n \times C_{2n} \) such \(α(x, y) = (x, 1) \)
and \(f(x, y) = (1, y) \). It is easy to see that \(α, f ∈ end(G), ker α = 1 \times \)
\(C_{2n}, ker f = α(G) \) and so \(G/α(G) = G/ker f \cong f(G) = 1 \times C_{2n} = \)
ker α. α is then a morphic endomorphism.

2. Let \(f : C_n \longrightarrow C_{2n}; \ x = a^k \longrightarrow y = b^{2k} \) and \(α : C_n \times C_{2n} \longrightarrow \)
\(C_n \times C_{2n}; \ (a^k, b^l) \longmapsto (1, b^{2k}). \ b^{2k} = 1 \iff n|k \iff a^k = 1 \) so
ker α = 1 \times C_{2n} \cong C_{2n}. It is easy to see that \(Ψ : C_n \times 1 \longrightarrow 1 \times f(C_n) = \)
\(G/α(G); (a^k, 1) \longmapsto (1, b^{2k}) \) is an isomorphism. We also have \(G/α(G) = \)
\(\{(a^k, 1), (a^k, b) / 1 \leq k \leq n\} \cong C_n \times C_2 \) which is not isomorph to
\(C_{2n} = ker α \) because the second group is cyclic but the first is not.

3. let \(α : C_n \times C_{2n} \longrightarrow C_n \times C_{2n}; \ (a^k, b^l) \longmapsto (1, b^{2k}). \) and \(β : C_n \times C_{2n} \longrightarrow \)
\(C_n \times C_{2n}; \ (x, y) \longmapsto (1, y). \) We then have
\(C_n \times C_{2n}/α(G) \cong C_1 \times C_1 \) and ker α = \(C_1 \times C_{2n} \) and the groups are not
isomorphic and α is not morphic.

We then have two consequences.

Lemma 3.11 [4]

1. If φ ∈ end(G) is morphic then φ is one to one if and only if it is onto.
Some properties on morphic groups

2. If $\phi \in \text{end}(G)$ is morphic, so also are $\phi \circ \psi$ and $\psi \circ \phi$ for every automorphism ψ of G.

Proof 3.12 1. Since $G/\phi(G) \simeq \text{ker}\phi$; then $\text{ker}\phi = 1$ if and only if $\phi(G) = G$.

2. If $\psi \in \text{aut}(G)$ and $\phi \in \text{end}(G)$ is morphic, then $G/\psi \circ \phi(G) \simeq G/\phi(G) \simeq \ker\phi = \ker\psi \circ \phi$ and $G/\phi \circ \psi(G) = G/\phi(G) \simeq \ker\phi \simeq \psi^{-1}(\ker\phi) = \ker(\phi \circ \psi)$.

Corollary 3.13 For all $n \in \mathbb{N}$; the only morphic endomorphisms of $n\mathbb{Z}$ are the trivial endomorphism.

Proof 3.14 Let $f \in \text{end}(n\mathbb{Z}) \setminus \{x \mapsto 0, x \mapsto \pm x\}$, then there exists $a \in \mathbb{Z} \setminus \{0, \pm 1\}$ such $f(n) = an$. f is then one to one and if it is morphic it must be onto. But this is false.

4 Subgroups and morphic property

Proposition 4.1 Let G be a group, H be a subgroup of G and α be a morphic endomorphism of G such

1. $\alpha(H) \lhd H$,

2. $\forall \overline{x} \in G/\alpha(G); \exists x \in H \ / \ \overline{x} = \overline{xt}$,

3. $\forall x \in G \setminus H; \alpha(x) \notin H$;

then α_H the restriction of α to H is also morphic.

Proof 4.2 α is morphic then if $\alpha(G) \lhd G$ we have $G/\alpha(G) \simeq \text{ker}\alpha$. Let $f : G/\alpha(G) \longrightarrow \text{ker}\alpha$ be an isomorphism and

$$g : H/\alpha(H) \longrightarrow \text{ker}\alpha_H : \ h \longmapsto f(\overline{h})$$

where \overline{h} is the class of h in $G/\alpha(G)$. The map is well defined because $f(\overline{h})$ is in $\text{ker}\alpha_H$ elsewhere if $f(\overline{h}) \notin H \implies f(\overline{h}) \in G \setminus H$ and by the third condition $\alpha(f(\overline{h})) \notin H$ and then $\alpha(f(\overline{h})) \neq 1$ and this means that $f(\overline{h}) \notin \text{Ker}\alpha$ which is a contradiction.

Now if $h = k$ then $hk^{-1} \in \alpha(H) \subset \alpha(G)$ and $\overline{h} = \overline{k} \implies f(\overline{h}) = f(\overline{k})$.

Let $y \in \text{ker}\alpha_H \subset \text{ker}\alpha$ then there exists $x \in G / f(\overline{x}) = y$ but the second condition implies that there exists $x_1 \in H$ such $\overline{x} = \overline{x_1}$ so $g(x_1) = f(\overline{x_1}) = f(\overline{x}) = y$ and g is onto.

Let $x_1, x_2 \in H/\alpha(H)$ such $g(x_1) = g(x_2)$ then $f(\overline{x_1}) = f(\overline{x_2}) \iff \overline{x_1} = \overline{x_2} \iff x_1.x_2^{-1} \in \alpha(G)$. But x_1, x_2 are in H so $x_1.x_2^{-1} \in H$ and there exists
\(y \in G\) such \(x_1 x_2^{-1} = \alpha(y)\). If \(y \notin H\) then \(\alpha(y) \notin H\) and this contradicts the fact that \(x_1 x_2^{-1} \in H\) and so \(x_1 x_2^{-1} = \alpha(y) \in \alpha(H)\) and therefore \(\hat{x}_1 = \hat{x}_2\) and \(g\) is one to one.

Let \(\hat{x}_1, \hat{x}_2 \in H/\alpha(H)\); then

\[
g(\hat{x}_1 \cdot \hat{x}_2) = g(\hat{x}_1 \cdot \hat{x}_2) = f(\hat{x}_1 \cdot \hat{x}_2) = f(\tilde{x}_1) f(\tilde{x}_2) = g(\tilde{x}_1) g(\tilde{x}_2)
\]

Proposition 4.3
Let \(G\) be a finite group, \(H\) be a subgroup of \(G\) and \(\alpha\) be a morphic endomorphism of \(G\) such

1. \(\alpha(H) \triangleleft H\),
2. \(|H/\alpha(H)| = |G/\alpha(G)|\),
3. \(H \cap \alpha(G) \subseteq \alpha(H)\);

then \(\alpha_H\) the restriction of \(\alpha\) to \(H\) is also morphic.

Proof 4.4
From the second condition, the fact that \(\alpha\) is morphic on \(G\) and the first isomorphism theorem we deduce that \(\ker \alpha_H = \ker \alpha\). Let

\[
\Phi : H/\alpha_H(H) \to G/\alpha(G)
\]

\[
\bar{x} \mapsto \bar{\tilde{x}}
\]

It is no hard to see that \(\Phi\) is well defined, a group morphism and one-to-one. So it is an isomorphism. In the other side \(G/\alpha(G) \cong \ker \alpha = \ker \alpha_H\) then \(H/\alpha_H(H) \cong \ker \alpha_H\) and \(\alpha_H\) is morphic.

Example 4.5
Conditions in proposition 3.2 are not necessary like proved below.

Take \(G = D_4, H = \langle a \rangle\) and \(\alpha \in \text{end}(G)\) defined by : \(\alpha(a) = a^2\) and \(\alpha(b) = 1\). We can prove that \(\alpha, \alpha_H\) are morphic but the second condition \(|G/\alpha(G)| = 4 \neq |H/\alpha_H(H)| = 2\) in proposition isn’t verified.

Corollary 4.6
If in the proposition 3.1; \(\alpha_H\) is onto; then \(\alpha\) is also onto.

Proof 4.7
\(\alpha_H\) is onto implies that \(H = \alpha(H) \subseteq \alpha(G)\). The condition 2) in the proposition implies that \(\forall x \in G; \ \exists x_1 \in H\) such \(\bar{x} = \bar{x}_1\). But \(\bar{x}_1 = \bar{T}\) implies that \(\bar{x} = \bar{T}\) and then \(x \in \alpha(G)\) and then there exists \(x' \in G\) such \(x = \alpha(x')\) and \(\alpha\) is onto.

Proposition 4.8
Let \(p\) be a prime integer and \(G\) an uniserial group of order \(p^3\). If \(\alpha \in \text{end}(G)\) is nontrivial morphic endomorphism then \(\alpha^2 = 1\) elsewhere \(\ker \alpha^2 = \alpha(G)\).
Proof 4.9 Let $\alpha \in \text{end}(G)$ such $\alpha(G) \triangleleft G$. α is non-trivial then $|\alpha(G)| \in \{p, p^2\}$. By the first isomorphism theorem and the fact that G is uniserial we must have $1 \triangleleft \ker \alpha \triangleleft \alpha(G) \triangleleft G$ or $1 \triangleleft \alpha(G) \triangleleft \ker \alpha \triangleleft G$.

1. Case: $1 \triangleleft \ker \alpha \triangleleft \alpha(G) \triangleleft G$. Let

$$\Psi : G \longrightarrow \alpha(G)/\ker \alpha$$

$$x \longmapsto \alpha(x).$$

It is easy to prove that Ψ is well defined and is onto and its kernel is exactly the set $\ker \alpha^2$. Applying the first isomorphism theorem we get $G/\ker \alpha^2 \cong \alpha(G)/\ker \alpha$ and then by Lagrange theorem the order of the subgroup $\ker \alpha^2$ is p^2 and also normal in G which is uniserial so we get $\ker \alpha^2 = \alpha(G)$.

2. If $1 \triangleleft \alpha(G) \triangleleft \ker \alpha \triangleleft G$. One can remark that $\forall x \in G; \alpha^2(x) = 1$ and then $\alpha^2 = 1$.

Proposition 4.10 Let p be a prime integer and G an uniserial group of order p^3. If $\alpha \in \text{end}(G)$ is nontrivial such $\alpha(G)$ is of order p^2. Then α is morphic if and only if $\ker \alpha \triangleleft G$.

Proof 4.11 Assume that the order of $\alpha(G)$ is p^2 and normal in G which is uniserial then we are in the case; $1 \triangleleft \ker \alpha \triangleleft \alpha(G) \triangleleft G$. Then $|G/\alpha(G)| = p = |\ker \alpha|$ so $G/\alpha(G)$ and $\ker \alpha$ are both of prime order then are cyclic and isomorphic to \mathbb{Z}_p so they are isomorphic.

The converse is the definition of morphic endomorphisms.

Definition 4.12 Let $D_n = \langle a, b \rangle \; a^n = b^2 = 1, ba^k b = a^{-k} \rangle$ be the dihedral group and $Q_n = \langle a, b \rangle \; a^n = b^2 = (ab)^2 = 1 \rangle$ be the quaternion group each of order $2n$.

Proposition 4.13 [4] the quaternion group Q_2 is not morphic.

Proof 4.14 First we know that Q_4 admits the presentation: $Q_4 = \langle a, b \rangle \; a^4 = 1, a^2 = b^2, ab = ba^3 \rangle = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$; so if $\alpha : Q_4 \longrightarrow Q_4$; is an endomorphism of Q_4 such $\alpha(a) = 1, \alpha(b) = a^2$ then $\ker \alpha = \{1, a, a^2, a^3\}$ and $\alpha(Q_4) = \{1, a^2\}$. $\alpha(Q_4)$ is normal in Q_4 but is easy to see that $Q_4/\alpha(Q_4) = \{1, a^2, \overline{b}, \overline{ab}\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ and $\ker \alpha \simeq \mathbb{Z}_4$.

Lemma 4.15 1. If n is odd then the normal subgroups of D_n are D_n and the subgroups of $\langle a \rangle$.

2. If $n \ (n \neq 2)$ is even then the normal subgroups of D_n are D_n, the subgroups of $\langle a \rangle$, the subgroup generated by a^2 and b and the subgroup generated by a^2 and ba.
The proposition bellow is proposition 15 in [4] with different proof.

Proposition 4.16 The dihedral group D_n is morphic if only if n is odd.

Proof 4.17 Let us take a nontrivial endomorphism $\alpha \in \text{end}(D_n)$ such $\alpha(D_n) < D_n$. By the lemma 3.9 , the only possible cases are $\alpha(D_n) \leq <a>$ or $\alpha(D_n) = D_n$.

1. If $\alpha(D_n) = <a>$ then $|\ker \alpha| = 2$ but $\ker \alpha$ must be a subgroup of $<a>$ so 2 divides n and this contradicts the fact that n is odd.

2. If $\alpha(D_n)$ and $\ker \alpha$ are a nontrivial subgroups of $<a>$ then if $|\alpha(D_n)| = m$ and $|\ker \alpha| = p$ we then have $n = mn_1$ and $n = pn_2$ and by the first isomorphism theorem we also have $2n = mp$ and those relations give $n = 2n_1n_2$ so n is even which is impossible.

So α can’t be morphic and then the only morphic endomorphisms are the trivial ones.

Conversly suppose that n is even so the endomorphism of D_n given by:

$$
\alpha : D_n \rightarrow D_n \\
a \mapsto 1 \\
b \mapsto a^n
$$

is such $\ker \alpha = <a>$ and $\alpha(D_n) = <a^\frac{n}{2} > \leq <a>$ so by the lemma 3.9 $\alpha(D_n) < D_n$. But in this case

$$
D_n/\alpha(D_n) = \{1, a, \cdots, a^{\frac{n}{2}-1}, b, ab, \cdots, a^{\frac{n}{2}-1}b\}
$$

where the elements b and ab are of order two. In the other side $\ker \alpha = <a>$ contains only one element of order two which is $a^\frac{n}{2}$. So the two groups can’t be isomorphic.

Remarks 4.18

1. In the lemma if we take $n = 4$ then we have an example of uniserial group of length 3 which isn’t morphic

$$
(1 < <a^2 > <a> <a^3>)
$$

and so give a negative answer to the question of Yuanlin.Li, W.K.Nikolson and Libo Zan [4]

2. In the case where n is even like proved in the above example this is’nt also true.
Example 4.19 Let $D_4 = \langle a, b/a^4 = b^2 = 1, bab = a^3 \rangle$ and $\alpha_1, \alpha_2, \alpha_3 \in \text{end}(D_4)$ such $\alpha_1(a) = 1, \alpha_2(b) = a^2, \alpha_2(a) = a^2, \alpha_2(b) = a^2$. It is easy to see that in all cases $\alpha_i(D_4) = \{1, a^2\} \triangleleft D_4$ and $D_4/\alpha_i(D_4) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$. In the other side $\text{ker}\alpha_i(D_4) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ only for $i = 2, 3$; $\text{ker}\alpha_1(D_4) \simeq \mathbb{Z}_4$. So D_4 isn’t morphic.

Definition 4.20 A subgroup H of a group G is called strongly characteristic if its image under every endomorphism of the group G is normal in H.

Proposition 4.21 Let H be a strongly characteristic subgroup of the group G. If α is a morphic endomorphism of G such $\text{ker}\alpha \subset H$ and $H \cap \alpha(G) \subset \alpha(H)$; then its restriction to H is also morphic.

Proof 4.22 Let $f : G/\alpha(G) \to \text{ker}\alpha$

\[
\overline{x} \mapsto f(\overline{x})
\]

be an isomorphism associated to α and let:

\[
\tilde{f} : H/\alpha(H) \to \text{ker}\alpha_H
\]

\[
\tilde{x} \mapsto f(\overline{x})
\]

Let $\tilde{x} \in H/\alpha(H)$ then $x \in G$ and then $f(\overline{x}) \in \text{ker}\alpha$. But $\text{ker}\alpha$ is a subset of H so $f(\overline{x}) \in H$ and the map \tilde{f} is well defined.

We also have:

\[
\text{ker}\tilde{f} = \{ \tilde{x} \in H/\alpha(H) / f(\overline{x}) = 1 \} = \{ \tilde{x} \in H/\alpha(H) / x \in \alpha(G) \} = \{ x.\alpha(H) / x \in \alpha(G) \cap H \}. \quad \text{By our hypothesis} \ x \in \alpha(H) \quad \text{and then} \ x.\alpha(H) \subset \alpha(H). \quad \text{But the two sets are classes so they are equal and} \ \text{ker}\tilde{f} = \{ \alpha(H) \} \quad \text{and} \quad \text{the map} \ \tilde{f} \quad \text{is one-to-one and therefore is an isomorphism.}
\]

5 Groups of order p^3; p an odd prime

Some results of this section are in [4] but the proofs are some times different. We also introduce the semidirect product to study this type of groups.

Let G be a group of order p^3; p an odd prime then G belong to one of five isomorphic classes: $C_p^3, C_p \times C_p, (C_p)^3, (C_p \times C_p) \rtimes C_p$ and $(C_p^2) \rtimes C_p$. Let $\alpha \in \text{end}(G)$ be non trivial (not the endomorphism $x \mapsto 1; \forall x \in G$ nor an automorphism). First of all if $|\text{ker}\alpha| = p$; $|\alpha(G)| = p^2$ and then $\text{ker}\alpha$ and $G/\alpha(G)$ are cyclic of order p and then isomorphic and α is morphic. We must study cases of $|\text{ker}\alpha| = p^2$; $|\alpha(G)| = p$ in each previous isomorphism classes.

1. The commutative case
(a) Case: $G = \mathbb{C}_{p^3}$

We know that C_n is morphic for all integer n, so is \mathbb{C}_{p^3}.

In this case $ker\alpha$ and $\alpha(\mathbb{G})$ are cyclic of order p^2 and p respectively. The are $p^2 - 1$ elements of $G = \langle a \rangle$ of order p^2 which are $a^{bp}; 1 \leq k \leq p^2 - 1$ and $p - 1$ elements of G of order p which are $a^{kp}; 1 \leq k \leq p - 1$. Because all subgroups considered and of the same order are isomorphic, we can take $\alpha(\mathbb{G}) = \langle a^{p^2} \rangle$ so $\mathbb{G}/\alpha(\mathbb{G}) = \langle a \rangle \simeq ker\alpha$ where $\overline{a} = \langle a^{p^2 + 1} \rangle$. α is then morphic.

(b) Case: $G = \mathbb{C}_{p^2} \times \mathbb{C}_p$.

Let

$$\alpha : \begin{array}{ccc}
G & \longrightarrow & G \\
(a^k, b^m) & \longmapsto & (1, b^m)
\end{array}$$

It is easy to see that $\alpha(\mathbb{G}) = 1 \times \mathbb{C}_p \simeq \langle (a^p, 1) \rangle$ such a subgroup of \mathbb{G}. We also have $ker\alpha = \mathbb{C}_{p^2} \times 1 \simeq \mathbb{C}_{p^2}$. Finally one have

$$\mathbb{G}/\alpha(\mathbb{G}) \simeq \mathbb{G}/\langle (a^p, 1) \rangle \simeq \mathbb{C}_p \times \mathbb{C}_p \not\simeq \mathbb{C}_{p^2}.$$ α isn’t morphic.

(c) Case: $G = (\mathbb{C}_p)^3$

If $ker\alpha \simeq \mathbb{C}_{p^2}$ then there exists one element $(x_1, x_2, x_3) \in \mathbb{G}$ such $ker\alpha = \langle (x_1, x_2, x_3) \rangle$ so the order of (x_1, x_2, x_3) is p^2 which is impossible; (the element of \mathbb{G} have an order less than p). So $ker\alpha$ must be isomorphic to $(\mathbb{C}_p)^2$. We can take $\alpha(\mathbb{G}) = \mathbb{C}_p \times 1 \times 1$ and $ker\alpha = 1 \times (\mathbb{C}_p)^2$; then the map

$$\Phi : \mathbb{G}/\alpha(\mathbb{G}) \longrightarrow ker\alpha; \overline{(1, b^k, c^m)} \longmapsto (1, b^k, c^m)$$

is an isomorphism so α is then morphic.

2. The noncommutative case

(a) Case: $G = (\mathbb{C}_{p^2}) \rtimes \mathbb{C}_p$

Lemma 5.1 If $gcd(k, p) = 1$ then the morphism given by

$$f_p : \begin{array}{ccc}
\mathbb{C}_{p^2} & \longrightarrow & \mathbb{C}_{p^2} \\
b & \longmapsto & b^k
\end{array}$$

is an automorphism.

Proof 5.2 The proof is easy since $gcd(k, p) = 1 \Longrightarrow gcd(k, p^2) = 1$ and then $b^{km} = 1$ and $gcd(k, p^2) = 1 \Longrightarrow p^2|m$ and finally f_p is one-to-one.
Lemma 5.3 Let \(k \equiv 1[p] \) and \(\Psi \) be the group morphism defined by:

\[
\Psi : C_p \longrightarrow \text{Aut}(C_{p^2}) \quad a
\mapsto f^p_p;
\]

we then have \(\Psi^p(a) = \text{id}_{C_{p^2}} \).

Proof 5.4 We have \(\Psi^p(a) = f^p_p \) so \(f^p_p(b) = b^{k^p} \) but \(k \equiv 1[p] \implies k^p \equiv 1[p^2] \) and \(b^{k^p} = b \). Finally \(f^p_p = \text{id}_{C_{p^2}} \).

Lemma 5.5 If \((b^{m_1}, a^{n_2}), (b^{n_1}, a^{n_2}) \in C_{p^2} \times C_p\) then the law of semidirect product \(C_{p^2} \rtimes C_p \) is defined by:

\[
(b^{m_1}, a^{n_2}), (b^{n_1}, a^{n_2}) = (b^{m_1+n_1k^{m_2}}, a^{m_2+n_2}),
\]

where the integer \(k \) is such \(k \equiv 1[p^2] \).

Proof 5.6 We know that if \(\Psi \) is such the conditions of the lemmas 5.1 and 5.2 are fulfil then the law of the semidirect product is such:

\[
(b^{m_1}, a^{n_2}), (b^{n_1}, a^{n_2}) = (b^{m_1}\Psi(a^{n_2})(b^{n_1}), a^{m_2+n_2}).
\]

But \(\Psi(a^{n_2}) = f^p_{n_2} \). So \(f^p_{n_2}(b^{n_1}) = (f^p_{n_2}(b))^{n_1} = (b^{k^{n_2}})^{n_1} \) and then

\[
(b^{m_1}\Psi(a^{n_2})(b^{n_1}), a^{m_2+n_2}) = (b^{m_1+n_1k^{m_2}}, a^{m_2+n_2}).
\]

Lemma 5.7 In the case \(p = 3 \) the only element of \(C_9 \rtimes C_3 \) are:

\[
(3, 0), (3, 1), (3, 2), (6, 0), (6, 1), (6, 2).
\]

The only normal subgroup of order 3 is \(< (3, 0) > \).

Lemma 5.8 Let \(\alpha \) be the endomorphism defined by:

\[
\alpha : G = C_9 \rtimes C_3 \longrightarrow C_9 \rtimes C_3 \quad \begin{array}{c}
(1, 0) \\
(0, 1)
\end{array} \mapsto \begin{array}{c}
(3, 0) \\
(0, 0)
\end{array} .
\]

Then \(\alpha(G) = < (3, 0) > < G \) and in \(G/\alpha(G) \);

\[
(k, m) = \{(k, m), (k + 3, m), (k + 6, m)\}.
\]

Proposition 5.9 The endomorphism \(\alpha \) of the lemma 5.5 is morphic and so \(G = C_9 \rtimes C_3 \) is morphic.
Proof 5.10 In this case we have \(\ker \alpha = \{(3k, m) / 0 \leq k \leq 2; 0 \leq m \leq 2\} \) and the map:

\[
\Gamma: \ker \alpha \longrightarrow G/\alpha(G) \\
(3k, m) \longrightarrow (k, m)
\]

is such:

\[
\Gamma((3k, m).(3k', m')) = \Gamma((3k + 3k'.4^m, m + m')) = (k + k'.4^m, m + m') =
\]

\[
= (k, m).(k', m') = \Gamma((3k, m)).\Gamma((3k', m'))
\]

and the map is a group morphism and also one-to-one, so it realizes an isomorphism and \(\alpha \) is then morphic.

By the lemma 5.4, we deduce that \(G \) is morphic.

(b) Case: \(G = (C_p \times C_p) \rtimes C_p \)

Lemma 5.11 Let \(f \) be the endomorphism defined by:

\[
f : C_p \times C_p = < a > \times < b > \longrightarrow C_p \times C_p \\
(a, 1) \longmapsto (a, 1); \\
(1, b) \longmapsto (a, b)
\]

then \(f \) is an automorphism of \(G \).

Lemma 5.12 Let \(f \) denotes the automorphism of the previous lemma and define the group morphism:

\[
\Psi: C_p = < c > \longrightarrow \text{Aut}(C_p \times C_p) \\
c \longmapsto f
\]

Then \(\Psi \) is such \(\Psi^p = \text{id}_{C_p \times C_p} \) and then defines a semidirect product of \(C_p \times C_p \) by \(C_p \). More precisely if \((a^m, b^n, c^k), (a^{m'}, b^{n'}, c^{k'}) \) are elements of \(< a > \times < b > \times < c > \) then their product in \((C_p \times C_p) \rtimes C_p \) is defined by:

\[
(a^m, b^n, c^k).(a^{m'}, b^{n'}, c^{k'}) = (a^{m+m'+kn'}, b^{n+n'}, c^{k+k'})
\]

Proof 5.13 \(\Psi \) is well defined and since every non trivial element of \(< c > \) is of order \(p \) we have \(\Psi^p(c) = \Psi(c^p) = \Psi(1) = \text{id}_{C_p \times C_p} \). In the other side we have \(f^p(a, b) = (a^{p+1}, b) = (a, b) \). These conditions define a semidirect product. More precisely if \((a^m, b^n, c^k), (a^{m'}, b^{n'}, c^{k'}) \) are elements of \(< a > \times < b > \times < c > \) then

\[
(a^m, b^n, c^k).(a^{m'}, b^{n'}, c^{k'}) = ((a^m, b^n).f^k(a^{m'}, b^{n'}), c^{k+k'}) =
\]

\[
= ((a^m, b^n).(a^{m'+kn'}, b^{n'}), c^{k+k'}) = (a^{m+m'+kn'}, b^{n+n'}, c^{k+k'})
\]
Lemma 5.14 The group endomorphism α defined by:

$$
\alpha : G = (C_p \times C_p) \rtimes C_p \longrightarrow G
$$

$$(a, 1, 1) \longrightarrow (a, 1, 1)$$
$$(1, b, 1) \longrightarrow (1, 1, 1)$$
$$(1, 1, c) \longrightarrow (1, 1, 1)$$

is morphic.

Proof 5.15 One can easily see that $(a^m, b^n, c^k) = (a^m, 1, 1)(1, b^n, 1)(1, 1, c)$ so $\alpha((a^m, b^n, c^k)) = (a^m, 1, 1)(1, 1, 1)(1, 1, 1) = (a^m, 1, 1) = (a, 1, 1)$ and $\alpha(G) = \langle (a, 1, 1) \rangle = C_p \times 1 \times 1$. Note that the inverse of (a^m, b^n, c^k) is the element $(a^{-m+k(n-p)}, b^{p-n}, c^{p-k})$ and then

$$(a^m, b^n, c^k)(a^{m'}, 1, 1)(a^{-m+k(n-p)}, b^{p-n}, c^{p-k}) =
(a^{m+m'}, b^n, c^k)(a^{-m+k(n-p)}, b^{p-n}, c^{p-k}) = (a^{m'}, 1, 1).$$

We conclude that $\alpha(G)$ is normal in G.

Let f be the endomorphism of G defined by:

$$
\begin{align*}
f : & \quad G \longrightarrow G \\
(a, 1, 1) & \longrightarrow (1, 1, 1) \\
(1, b, 1) & \longrightarrow (1, b, 1) \\
(1, 1, c) & \longrightarrow (1, 1, c)
\end{align*}
$$

We have $\ker f = C_p \times 1 \times 1 \simeq \alpha(G)$ and $f(G) = 1 \times C_p \times C_p \simeq \ker \alpha$ so

$$G/\alpha(G) \simeq G/\ker f \simeq f(G) \simeq \ker \alpha$$

and α is morphic.

Theorem 5.1 The group $C_p \times C_p \rtimes C_p$ is morphic.

Proof 5.16 Let α like in lemma 5.9 and β be an other endomorphism of G. If $|\beta(G)| = p^2$, then it is obvious that $G/\beta(G) \simeq \ker \beta$. If $|\beta(G)| = p$, $\ker \beta$ is of order p^2 so it is isomorphic to $C_p \times C_p$ or C_p^2, but in the last case it must exists an element in G of order p^2 which is impossible; then $\ker \beta \simeq C_p \times C_p \simeq 1 \times C_p \times C_p$, so $\ker \beta \simeq \ker \alpha$ $\simeq G/\alpha(G) \simeq G/\beta(G)$ and β is morphic and finally G is morphic.

References

Received: October, 2012