Extended Results on f-Orthomorphisms over the Second Order Dual of an f-algebra

Ömer Gök
Department of Mathematics, Yıldız Technical University
Esenler, Davutpaşa, Istanbul, Turkey
gok@yildiz.edu.tr

Şebnem Yıldız Pestil
Department of Mathematics, Yıldız Technical University
Esenler, Davutpaşa, Istanbul, Turkey
spestil@yildiz.edu.tr

Copyright © 2013 Ömer Gök and Şebnem Yıldız Pestil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(A \) be an Archimedean f-algebra with unit and \(L, M \) be two f-modules over \(A \). In this paper we show that \(L'' \) is an f-module over \(A'' \) and \(A'' \) is topologically full over \(A'' \). Assume that \(T \) is an f-orthomorphism from \(L \) to \(M \) over \(A \). Also, we show that the second adjoint \(T'' \) of \(T \) is an f-orthomorphism from \(L'' \) to \(M'' \) over \(A'' \).[12].

Mathematics Subject Classification: 47B60, 06F25

Keywords: f-algebra, f-module, ideal center, f-orthomorphisms

1 Introduction

Let \(L \) and \(M \) be two Archimedean Riesz spaces and \(A \) be an f-algebra. The positive cone of \(L \) will be denoted by \(L_+ \). A linear operator between two Riesz spaces is said to be order bounded if it maps order bounded subsets of \(L \) to order bounded subsets of \(M \). The vector spaces of all order bounded operators
from the Riesz space L into Riesz space M will be denoted by $L_b(L, M)$. An operator $T : L \to L$ on a Riesz space L is said to be band preserving whenever T leaves all bands of L invariant, i.e., whenever $T(B) \subseteq B$ holds for each band B of L. Recall that in a Riesz space, two elements x and y are said to be disjoint (in symbols $x \perp y$) whenever $|x| \land |y| = 0$ holds. An operator $T : L \to M$ between two Riesz spaces is said to preserve disjointness whenever $x \perp y$ in L implies $Tx \perp Ty$ in M. $\pi \in L_b(L)$ is called an orthomorphism of L if $x \perp y$ in L imply that $\pi(x) \perp y$. $\text{Orth}(L)$ is a space of all order bounded and band preserving operators on L and the set of orthomorphisms on L is $\text{Orth}(L) = \{ T \in L_b(L) : x \perp y \Rightarrow Tx \perp Ty \}$. As I is the identity operator in L, the principle order ideal generated by the identity operator I in $\text{Orth}(L)$ is called the ideal center of L and is denoted by $Z(L),[1,3]$. If L is a Dedekind complete Riesz space, $\text{Orth}(L) = B(I)$ as $B(I)$ is the band generated by $I,[13]$. The vector space L' of all order bounded linear functionals on L is called the order dual of L, i.e., $L' = L_b(L, R)$. L' is a Riesz space,[2,14]. The order bidual L'' of L is the order dual of L' that is $L'' = (L')'$ and the order continuous part of the order bidual of L is denoted by $(L')''_o$. Recall that the expression L' separates the points of L means that for each $0 < x \neq 0$ there exists some $0 < f \in L'$ with $f(x) \neq 0$. The Riesz space A is said to be Riesz algebra(lattice ordered algebra) if there exists an associative multiplication in A with the usual algebra properties such that $ab \in A_+$ for all $a, b \in A_+$. Such a Riesz algebra A is called an f-algebra if A has the additional property that $a \perp b$ in A implies $ca \perp b$ and $ac \perp b$ for all $c \in A$ (in other words, left and right multiplication by c are orthomorphisms of A). Since every Archimedean f-algebra is commutative [7],we deal only with commutative f-algebras in this work. Let A be an f-algebra with A' separates the points of A. Let us recall also that $(A')'_n \subseteq \text{Orth}(A)$, the order continuous part of the order bidual of an f-algebra $A,[8]$. If A has a multiplicative unit, then $(A')'_n = (A')'$, the whole order bidual of $A,[8]$. For unexplained notions, we refer to the books [2,9,10,11,14]. Here all Riesz spaces have separating order duals.

Definition 1 [12,6] Let A be an f-algebra with unit e and L be a Riesz space. L is said to be an f-module over A if there exists a map; $A \times L \to L : (a, x) \to a \cdot x$ satisfying,
1) L is a module over A and $e \cdot x = x$ for each $x \in L$
2) for each $a \in A_+$ and $x \in L_+$ we have $a \cdot x \in L_+$
3) If $x \perp y$ in L, then for each $a \in A$ we have $a \cdot x \perp y$.

Lemma 2 [12] Let A be an f-algebra with unit e and L be a Riesz space. For all $x \in L$, $f \in L'$ and $a \in A$. Riesz space L' with $A \times L' \to L' : (a, f) \to a \cdot f : a \cdot f(x) = f(a \cdot x)$ is an f-module over A.
Extended results on f-orthomorphisms

In this case, we define a map $m : A \to Orth(L')$ defined by $m(a) = \pi'_{\alpha}$ where $\pi'_\alpha(f) = a \cdot f$ for each $f \in L'$. m is a unital algebra and Riesz homomorphism. This map induces an f-module structure on L' over A. If L is an f-module over A, we can define the mappings $[4]$.

1) $L \times L' \to A'$
\[(x, f) \to x \cdot f : (xf)(a) = f(ax) \text{ for } x \in L, f \in L', a \in A. \]

2) $A'' \times L' \to L''$
\[(F, f) \to F \cdot f : (F \cdot f)(x) = F(f \cdot x) \text{ for } x \in L, f \in L', F \in A''. \]

3) $A'' \times L'' \to L''$
\[(F, \hat{f}) \to (F \cdot \hat{f})(f) = \hat{f}(F \cdot f) \text{ for } f \in L', F \in A'', \hat{f} \in L''. \]

We introduce the mappings:
1) $A \times L' \to L'$
\[(a, f) \to a \cdot f : af(x) = f(ax) \text{ for } x \in L, f \in L', a \in A. \]

2) $L' \times L' \to A$
\[(\hat{f}, f) \to \psi_{f, j} : \psi_{f, j}(a) = \hat{f}(a \cdot f) \text{ for } a \in A, f \in L', \hat{f} \in L''. \]

Theorem 3 [12] Suppose that L is an f-module over A.
Let $u : A \to Orth(L'')$ where $u(a)\hat{f} = a \cdot \hat{f}$ for each $\hat{f} \in L''$. $v : A'' \to Orth(L'')$ where $v_{\hat{f}}(f) = F \cdot \hat{f}$ for each $\hat{f} \in L'$. Then u and v are positive operators with $u(A) \subseteq Orth(L'')$, $v(A'') \subseteq Orth(L'')$.

Also, u and v are unital algebra and Riesz homomorphism.

Proof: Here u and v are positive operators.
Let $\pi'_\alpha \in Orth(L)$ and we denote the adjoint of π'_α by π''_{α}.

$m : A \to Orth(L') : a \to m(a) = \pi'_\alpha$ where $\pi'_\alpha(f) = a \cdot f$ for $f \in L'$ and

$k : Orth(L') \to Orth(L'') : \pi' \to k(\pi') = \pi''$ are Riesz and algebra homomorphisms. m is a unital algebra and Riesz homomorphism by Proposition 2.2[12].

The mapping k is injective, positive and satisfies $k(I') = I''$ where I' denotes the identity mapping of L'. $Orth(L'')$ is commutative so,

\[k(\pi'_1 \pi'_2) = \pi''_{\pi'_1 \pi'_2} = \pi'' \pi''_{\pi'_1} = \pi''_{\pi'_1} \pi'' = k(\pi'_1)k(\pi'_2) \text{ for all } \pi'_1, \pi'_2 \in Orth(L'). \]

By Corollary 5.5 of [7] k is an Riesz homomorphism.

For $a \in A$, $\hat{f} \in L''$, and $f \in L$ we have $u(a)\hat{f}(f) = a \cdot \hat{f}(f) = \hat{f}(af) = \hat{f}(\pi'_\alpha(f)) = \pi''_{\alpha}(\hat{f})(f) = (k \circ m)(\pi'_\alpha)(\hat{f})(f)$. k and m are algebra homomorphisms since $u(a \cdot b) = (k \circ m)(a \cdot b) = k(m(a \cdot b)) = k(m(a)) \cdot k(m(b)) = (k \circ m)(a)(k \circ m)(b) = u(a) \cdot u(b)$. Thus, u is an algebra homomorphism. Let \hat{a} be the image of A'' and for $a \in A$, $\hat{f} \in L''$, $f \in L'$,

\[v_{\hat{a}}(f) = \hat{a} \cdot \hat{f}(f) = \hat{a}(\psi_{f, j})(a) = \hat{f}(af) = a \cdot \hat{f}(f) = u(a)\hat{f}(f), \]

and $v_{\hat{a}}(\hat{f}) \in Orth(L'')$.

Let $I(A)$ denote the ideal generated by A in A'' and $0 \leq F \in I(A)$. Hence there exists $a \in A$ with $0 \leq F \leq \hat{a}$. As $v : A'' \to Orth(L'')$ is positive we have $0 \leq v_F \leq v_{\hat{a}}$ then $v_F \in Orth(L'')$. We choose G_{α} in $I(A)$ with $G_{\alpha} \uparrow F$. As $0 \leq \psi_{f, j} \in A'$ for each $f \in L'$, and $\hat{f} \in L''$, we have

$G_{\alpha}(\psi_{f, j}) \uparrow F(\psi_{f, j})$ so $G_{\alpha} \circ \hat{f} \uparrow F \circ \hat{f}$.

\[G_a \circ \hat{f} \uparrow F \circ \hat{f} \text{ and } v_{G_a} \uparrow v_F. \]

Since \(v_{G_a} \in \text{Orth}(L') \) and Orth\((L'') \) is a band we get \(v_F \in \text{Orth}(L'') \).

Consider the mapping \(v : A'' \rightarrow \text{Orth}(L') \) defined by \(v(F)(\hat{f}) = F \cdot \hat{f} = v_F(\hat{f}) \) for all \(F \in A'' \) and \(\hat{f} \in L'' \).

\[((F \cdot G) \cdot \hat{f})(\hat{f}) = F(G \cdot (\hat{f} \cdot \hat{f})) = F(G \cdot \hat{f}) = (F \cdot (G \cdot \hat{f}))(\hat{f}) \]

for all \(F, G \in A'' \) and \(\hat{f} \in L'' \).

Therefore, \(v_{F-G} = v_F \cdot v_G \) for all \(F, G \in A'' \). \(v \) is an algebra homomorphism.

Suppose that \(F \wedge G = 0 \) in \(A'' \). Then \(v(F \cdot G) = v(F)v(G) = 0 \) in Orth\((L'') \) as \(FG = 0 \). However, Orth\((L'') \) is a unital and hence semiprime f-algebra, \([5, 8]\) so \(v(F) \wedge v(G) = 0 \). We may conclude that \(v \) is disjoint preserving and from \([7]\) it is also Riesz homomorphism.

Theorem 4 \([12]\) Let \(A \) be an f-algebra with unit and \(L \) be an f-module over \(A \). Then Riesz space \(L'' \) is an f-module over \(A'' \).

Proof: From the consequence of previous theorem, \(L'' \) is an f-module over \(A'' \).

That is,

\[A'' \times L'' \rightarrow L'' : (F, \hat{f}) \rightarrow (F \cdot \hat{f})(\hat{f}) = \hat{f}(F \cdot f) \]

satisfies the following conditions;

1) \(F \cdot (G \cdot \hat{f}) = (F \cdot G)\hat{f} \), for all \(F, G \in A'' \) and \(\hat{f} \in L'' \)

2) \(0 \leq F \in A'', 0 \leq \hat{f} \in L'' \), \(F \cdot \hat{f} \geq 0 \)

3) If \(\hat{f} \perp \hat{g} \) in \(L'' \), then \(F \cdot \hat{f} \perp \hat{g} \) in \(L'' \), for all \(\hat{f}, \hat{g} \in L'' \) and \(F \in A'' \).

The above theorem shows that, when \(A'' \) is an f-algebra with unit, \(L'' \) is a unital f-module over \(A'' \) and multiplication satisfies \(E \cdot \hat{f} = \hat{f} \) for all \(\hat{f} \in L'' \) and \(E \in A'' \)(\(E \) is the unit element in \(A'' \)).

Definition 5 \([12]\) The f-module \(L'' \) over \(A'' \) with unit \(E \) is said to be topologically full with respect to \(A'' \) if for two arbitrary vectors \(\hat{f}, \hat{g} \) satisfying \(0 \leq \hat{g} \leq \hat{f} \) in \(L'' \) there exists a net \(0 \leq a_\alpha \leq E \) in \(A'' \) such that \(a_\alpha \cdot \hat{f} \rightarrow \hat{g} \) in \(\sigma(L'', L') \).

Theorem 6 \([12]\) If \(A \) is an f-algebra with unit then \(A'' \) is topologically full with respect to \(A'' \).

Proof: Suppose that \(\hat{f}, \hat{g} \in A'' \) with \(0 \leq \hat{g} \leq \hat{f} \). Consider \(\pi \in \text{Orth}(A'') \) with the map \(v \) then there is an \(F \in A'' \), \(0 \leq F \leq E \) such that \(v(F) = \pi \). In other words, \(v(F)(\hat{f}) = F \cdot \hat{f} = \hat{g} \).

Since \(A \) is \(|\sigma|(A'', A') \) dense in \(A'' \) \([2]\),

there exists a net \(\{a_\alpha\} \) in \(A \), \(0 \leq a_\alpha \leq e \) with \(a_\alpha \rightarrow F \).

So we have \(a_\alpha \cdot \hat{f} \rightarrow F \cdot \hat{f} \) and then \(a_\alpha \cdot \hat{f} \rightarrow \hat{g} \) in \(\sigma(A'', A') \).

Example 7 \([12]\) Let \(L \) be a Riesz space with separating order dual and \(L \) be a \(Z(L) \)-module then the bilinear map, \(Z(L)'' \times L'' \rightarrow L'' : (\hat{\pi}, \hat{f}) \rightarrow (\hat{\pi} \cdot \hat{f})(\hat{f}) = \hat{f}(\hat{\pi} \cdot f) \) shows that \(L'' \) is an f-module over \(Z(L)' \). So, \(\text{Orth}(L'') \subseteq L^b(L'', L''; Z(L'')) \subset L^b(L'') \).
Theorem 8 [12] Let L be an f-module over A. Let $f \in L'$ be arbitrary and consider the set $S(f) = \{ \psi_{f,\hat{f}} : \hat{f} \in L'' \}$. $S(f)$ is order ideal in A'.

Definition 9 [12] Let L be an f-module over A. For $f \in L'$, the closure of the set $S(f) = \{ \psi_{f,\hat{f}} : \hat{f} \in L'' \}$ in $\sigma(A',A'')$ topology is called the support of f and is denoted by $\text{supp}(f)$.

Theorem 10 [12] Let L be an f-module over A. For $f, g \in L'$, $\text{supp}(f) \cap \text{supp}(g) = \{0\}$ if and only if $f \perp g$.

Proof: \Rightarrow: Suppose $\text{supp}(f) \cap \text{supp}(g) = \{0\}$. $\text{supp}(f)$ and $\text{supp}(g)$ are projection bands because of Dedekind completeness of A'.

Thus $\text{supp}(f) \perp \text{supp}(g)$. Let $\hat{f} \in L''_+$, then $\psi_{f,\hat{f}} \perp \psi_{g,\hat{f}} \Rightarrow \vert \psi_{f,\hat{f}} \vert = 0$. It follows that $\psi_{f,\hat{f}} = 0$ and $|f| \bigwedge |g| = 0$.

\Leftarrow: Let $f \perp g$. The map $(\hat{f}, f) \to \psi_{f,\hat{f}}$ of $L'' \times L' \to A'$ is bijective so,

$\vert \psi_{f,\hat{f}} \vert \leq \psi_{|f|,|f|} \leq \psi_{|f|,|f| \bigvee |g|}$ and

$\vert \psi_{g,\hat{g}} \vert \leq \psi_{|g|,|g|} \leq \psi_{|g|,|f| \bigvee |g|}$ for each $\hat{f}, \hat{g} \in L''$. This implies

$0 = \psi_{f,\hat{f}} \bigwedge \psi_{g,\hat{g}} \leq \psi_{f,\hat{f} \bigvee |g|} \bigwedge \psi_{g,|g| \bigvee |\hat{g}|} = \psi_{f,|f| \bigvee |g|} = 0$.

Therefore $\psi_{f,\hat{f}} \perp \psi_{g,\hat{g}}$ for each $\hat{f}, \hat{g} \in L''$. Then $S(f) \perp S(g)$.

Definition 11 [12] Let L and M be two f-modules over A and $T \in L_0(L, M)$. T is called an f-orthomorphism if $S(Tx) \subset S(x)$ for each x in L. The collection of all f-orthomorphisms will be denoted by $\text{Orth}(L, M; A)$.

Let L and M be two f-modules over A. If $T \in \text{Orth}(L, M; A)$ then $T' \in \text{Orth}(M', L'; A'')$ is well known from [12] and so we have the following theorem.

Theorem 12 Let L and M be two f-modules over A. Assume both are topologically full with respect to A.

i) If $T \in \text{Orth}(L, M; A)$ then $T' \in \text{Orth}(M', L'; A'')$.

ii) If $T' \in \text{Orth}(M', L'; A'')$ then $T'' \in \text{Orth}(L'', M''; A''')$.

ACKNOWLEDGEMENTS. This paper is the result of a research project. The number of research project is 2012.01.03.DOP01.

References

Received: March 13, 2013