Stone Spaces and Compactifications

Monerah Al-Hajri

University of Dammam, College of Sciences
P.O. Box 838, 31113 Dammam, KSA
M3sbkh@yahoo.com

Karim Belaid

University of Dammam, College of Sciences
P.O. Box 838, 31113 Dammam, KSA
belaid412@yahoo.fr

Othman Echi

King Fahd University of Petroleum and Minerals
Department of Mathematics and Statistics
PO Box 5046, Dhahran 31261, KSA
echi@kfupm.edu.sa

Copyright © 2013 Monerah Al-Hajri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper deal with spaces such that their compactification is a Stone space. The particular cases of the one-point compactification, the Wallman compactification and the Stone-Čech compactification are studied.

Mathematics Subject Classification: 06B30, 06F30, 54F05

Keywords: Totally disconnected, Stone space, Compactification

1 Introduction

A topological space X is called a zero dimensional if X has a basis consisting of clopen sets. In Bourbaki [1] the condition Hausdorff is added for a space X
to be a zero dimensional space.

A totally disconnected space is a topological space that is maximally disconnected, in the sense that it has no non-trivial connected subsets. Hence a topological space X is a totally disconnected space if and only if for any $x \neq y$ in X, there exists a clopen set U of X such that $x \in U$ and $y \notin U$. The concepts of zero-dimensionality and total disconnectedness are closely related. Indeed, every zero-dimensional T_1-space is totally disconnected.

A Stone space, also called a Boolean space, is a topological space that is zero-dimensional, T_0 and compact. Equivalently, a Stone space is a totally disconnected compact space.

Recall that a compactification of a topological space X is a couple $(K(X), e)$, where $K(X)$ is a compact space and $e : X \to K(X)$ is a continuous embedding (e is a continuous one-to-one map and induces a homeomorphism from X onto $e(X)$) such that $e(X)$ is a dense subspace of $K(X)$. When a compactification $(K(X), e)$ of X is given, X will be identified with $e(X)$ and assumed to be dense in $K(X)$.

The first section of this paper contains some remarks and properties of clopen sets on a compactification $K(X)$ of a space X.

The second section deals with a characterization of space such that its one point compactification (resp. Wallman compactification) is a Stone space.

In the third section we give a characterization of space X such that $\beta(\rho(X))$ is a Stone space with $\rho(X)$ is the universal Tychonoff space and $\beta(\rho(X))$ is the Stone-Čech compactification of $\rho(X)$.

2 Clopen sets and compactifications

Our goal in the present section is to give some useful observation about clopen sets on a compactification $K(X)$ of a topological space X.

Proposition 2.1 Let X be a topological space and $K(X)$ be a compactification of X. Let F be a closed set of $K(X)$ and O be an open set of $K(X)$. If $F \cap X = O \cap X$ then $O \subseteq F$.

Proof 2.2 Suppose that $O \notin F$. Then $O - F$ is a nonempty open set of $K(X)$. Since $F \cap X = O \cap X$, $O - F \subseteq K(X) - X$ contradicting the fact that X is a dense set of $K(X)$.

Corollary 2.3 If L is a clopen set of X such that there exist two clopen sets H_1 and H_2 of $K(X)$ with $L = H_1 \cap X = H_2 \cap X$, then $H_1 = H_2$.

Proposition 2.4 Let X be a topological space and $K(X)$ be a compactification of X. A subset L of X is a clopen if and only if $L = X \cap \text{cl}_{K(X)}(L) = X \cap \text{int}(\text{cl}_{K(X)}(L))$.
Proof 2.5. Necessary condition. Since L is a closed set of X, there exists a closed set C of $K(X)$ such that $C \cap X = L$. Hence $L \subseteq cl_{K(X)}(L) \subseteq C$, so $cl_{K(X)}(L) \cap X = L$. Let O be an open set of $K(X)$ such that $O \cap X = L$. By Proposition 2.1, $O \subseteq cl_{K(X)}(L)$. Thus $O \subseteq int(cl_{K(X)}(L))$. Since $O \subseteq int(cl_{K(X)}(L)) \subseteq cl_{K(X)}(L)$ and $O \cap X = cl_{K(X)}(L) \cap X = L$, $int(cl_{K(X)}(L)) \cap X = L$. Therefore $L = X \cap cl_{K(X)}(L) = X \cap int(cl_{K(X)}(L))$.

Proposition 2.6. Let X be a topological space, L be a clopen set of X and $K(X)$ be a compactification of X. If there exists a clopen set H of $K(X)$ such that $H \cap X = L$, then $H = cl_{K(X)}(L)$.

Proof 2.7. As H is an open set of $K(X)$, $H \subseteq cl_{K(X)}(L)$ (by Proposition 2.1). That $cl_{K(X)}(L) \subseteq H$ is due to the fact that H is a closed set containing L.

Let X be a non compact topological space, set $\tilde{X} = X \cup \{\infty\}$ with the topology whose members are the open sets of X and all subsets U of \tilde{X} such that $\tilde{X} \setminus U$ is a closed compact set of X. The space \tilde{X} is called the one-point compactification of X (or the Alexandroff compactification of X).

Proposition 2.8. Let X be a non-compact topological space and L be a clopen of X. Then there exists a clopen set H of the Alexandroff compactification \tilde{X} such that $H \cap X = L$ if and only if either L or $X - L$ is compact.

Proof 2.9. Necessary condition.
If $\infty \in H$, then $\tilde{X} - H$ is a closed set of \tilde{X} not containing ∞. Hence $X - L$ is compact.
If $\infty \notin H$, then H is a closed set of \tilde{X} not containing ∞. Hence L is compact.

Sufficient condition. It is immediate that if L is compact, then L is a clopen set of \tilde{X}. If $X - L$ is a compact set of X, then $X - L$ is a clopen set of \tilde{X}. So $L \cup \{\infty\}$ is a clopen set of \tilde{X} such that $(L \cup \{\infty\}) \cap X = L$.

Proposition 2.10. Let X be a topological space and $K(X)$ be a compactification of X. If $K(X)$ is a Stone space, then the following properties hold:

1. X is totally disconnected.
2. For each open set O of X and $x \in O$ there exists a clopen set C such that $x \in C \subseteq O$.

Proof 2.11. (1) Straightforward.
(2) Let O be an open set of X and $x \in O$. Then there exists an open set U of $K(X)$ such that $O = U \cap X$. Clearly, $K(X) - U$ is a compact closed set of
K(X), and for each \(y \in K(X) - U \) there exits a clopen set \(C_y \) of \(K(X) \) such that \(x \in C_y \) and \(y \notin C_y \). So there exists a finite subset \(Y \) of \(K(X) - U \) such that \(K(X) - U \subseteq \bigcup \{ K(X) - C_y : y \in Y \} \). Hence \(C = \cap \{ C_y : y \in Y \} \) is a clopen neighborhood of \(x \) such that \(C \subseteq U \). Thus \(C \cap X \) is a clopen set of \(X \) and \(x \in C \cap X \subseteq O \).

3 Space such that its one-point compactification (resp. Wallman compactification) is a Stone space

Proposition 3.1 Let \(X \) be a topological space. Then the one-point compactification \(\tilde{X} \) of \(X \) is a Stone space if and only if \(X \) is a \(T_2 \)-space and the collection of compact clopen sets is a base of \(X \).

Proof 3.2 Necessary condition. Since \(\tilde{X} \) is a Stone space, \(X \) is \(T_2 \) and \(\tilde{X} \) has a basis consisting of clopen sets. Let \(U \) be an open set of \(X \). So \(U \) is an open set of \(\tilde{X} \). Hence there exits a collection \(\mathcal{O} \) of compact clopen sets of \(\tilde{X} \) such that \(U = \bigcup \{ O : O \in \mathcal{O} \} \). But, for each \(O \in \mathcal{O} \), \(O \subseteq X \); so \(O \) is a compact clopen set of \(X \). Thus the collection of compact clopen sets is a base of \(X \).

Sufficient condition. First, remark that if \(U \) is a compact closed set of \(X \), then \(U \) is a compact closed set of \(\tilde{X} \).

Let \(x \neq y \) be in \(X \). We consider two cases.

Case 1. \(x, y \in X \). Since \(X \) is a \(T_2 \)-space, there exists a compact clopen set \(U \) of \(X \) such that \(x \in U \) and \(y \notin U \). To complete the proof this case it suffices to remark that \(U \) is also a compact closed set of \(\tilde{X} \).

Case 2. \(x \in X \) and \(y = \infty \). Since the collection of compact clopen sets is a base of \(X \), there exists a compact clopen set \(U \) of \(X \) such that \(x \in U \). Therefore \(\tilde{X} \) is a Stone space, since \(U \) is a compact clopen set of \(\tilde{X} \).

Recall that the Wallman compactification of \(T_1 \)-space was introduced, in 1938 [4], by Wallman as follow:

Let \(\mathcal{P} \) be a class of subsets of a topological space \(X \) which is closed under finite intersections and finite unions.

A \(\mathcal{P} \)-filter on \(X \) is a collection \(\mathcal{F} \) of nonempty elements of \(\mathcal{P} \) with the properties:

(i) \(\mathcal{F} \) is closed under finite intersections;

(ii) \(P_1 \in \mathcal{F}, P_1 \subseteq P_2 \) implies \(P_2 \in \mathcal{F} \).
A \mathcal{P}\text{-ultrafilter} is a maximal \mathcal{P}\text{-filter. When } \mathcal{P} \text{ is the class of closed sets of } X, \text{ then the } \mathcal{P} \text{-filters are called closed filters.}

The points of the Wallman compactification \(wX\) of a space \(X\) are the closed ultrafilters on \(X\). For each closed set \(D \subseteq X\), define \(D^*\) to be the set \(D^* = \{A \in wX \mid D \in A\}\). Thus \(\mathcal{C} = \{D^* \mid D \text{ is a closed set of } X\}\) is a base for the closed sets of a topology on \(wX\). Let \(U\) be an open set of \(X\), we define \(U^* = \{A \in wX \mid F \subseteq U \text{ for some } F \in A\}\), it is easily seen that the class \(\{U^* \mid U\text{ is an open set of } X\}\) is a base for open sets of the topology of \(wX\), and the following properties of \(wX\) are frequently useful:

(i) If \(U \subseteq X\) is open, then \(wX - U^* = (X - U)^*\).

(ii) If \(D \subseteq X\) is closed, then \(wX - D^* = (X - D)^*\).

(iii) If \(U_1\) and \(U_2\) are open sets of \(X\), then \((U_1 \cap U_2)^* = U_1^* \cap U_2^*\) and \((U_1 \cup U_2)^* = U_1^* \cup U_2^*\).

Proposition 3.3 Let \(X\) be a \(T_1\)-space. Then \(wX\) is a Stone space if and only if for each disjoint closed sets \(F\) and \(G\) of \(X\), there exists a clopen set \(U\) such that \(F \subseteq U\) and \(G \cap U = \emptyset\).

Proof 3.4 Necessary condition. First, remark that if \(Q\) is a clopen set of \(wX\), then there exists a clopen set \(U\) of \(X\) such that \(Q = U^*\). In fact, let \(\mathcal{V}\) be a collection of open sets of \(X\) such that \(Q = \cup\{V^* : V \in \mathcal{V}\}\). Since \(Q\) is a closed set of \(wX\), \(Q\) is a compact set of \(wX\). Hence there exists a finite subcollection \(\mathcal{V}'\) of \(\mathcal{V}\) such that \(Q = \cup\{V'^* : V \in \mathcal{V}'\}\). Thus \(Q = U^*\) with \(U = \cup\{V : V \in \mathcal{V}'\}\). That \(U\) is a clopen set of \(X\) follows immediately from the fact that \(U = Q \cap X\).

Let \(F\) and \(G\) be two disjoint closed sets of \(X\). Then \(F^*\) and \(G^*\) are two disjoint closed sets of \(wX\). Let \(\mathcal{F} \in F^*\) and \(\mathcal{G} \in G^*\). Since \(wX\) is a Stone space, there exists a clopen set \(U\) of \(X\) such that \(\mathcal{F} \in U^*\) and \(\mathcal{G} \notin U^*\). So, for each \(\mathcal{G} \in G^*\), there exists a collection \(\mathcal{V}\) of clopen sets of \(X\) such that \(F^* \subseteq \cup\{V^* : V \in \mathcal{V}\}\) and \(\mathcal{G} \notin \cup\{V^* : V \in \mathcal{V}\}\). Since \(F^*\) is a compact closed set of \(wX\), there exists a finite subcollection \(\mathcal{V}'\) of \(\mathcal{V}\) such that \(F^* \subseteq \cup\{V'^* : V \in \mathcal{V}'\}\) and \(\mathcal{G} \notin \cup\{V'^* : V \in \mathcal{V}'\}\). Set \(W_{\mathcal{G}} = \cap\{wX - V'^* : V \in \mathcal{V}'\}\). Hence \(W_{\mathcal{G}}\) is a clopen neighborhood of \(\mathcal{G}\) such that \(W_{\mathcal{G}} \cap F^* = \emptyset\). Set \(\mathcal{W} = \{W_{\mathcal{G}} : \mathcal{G} \in G^*\}\). Since \(G^*\) is a compact set of \(wX\), there exists a finite subcollection \(\mathcal{W}'\) of \(\mathcal{W}\) such that \(G^* \subseteq \cup\{W_{\mathcal{G}} : W_{\mathcal{G}} \in \mathcal{W}'\}\). Thus \(Q = \cup\{W_{\mathcal{G}} : W_{\mathcal{G}} \in \mathcal{W}'\}\) is a clopen set of \(wX\) such that \(G^* \subseteq Q\) and \(F^* \subseteq wX - Q\). Then there exists a clopen set \(U\) of \(X\) such that \(U^* = wX - Q\). Therefore \(F \subseteq U\) and \(G \cap U = \emptyset\).

Sufficient condition. Let \(\mathcal{F}\) and \(\mathcal{G}\) two distinct element of \(wX\). Then there exist two closed sets \(F\) and \(G\) of \(X\) such that \(F \in \mathcal{F}\), \(G \in \mathcal{G}\) and \(F \cap G = \emptyset\). Hence there exists a clopen set \(U\) of \(X\) such that \(F \subseteq U\) and \(G \cap U = \emptyset\). Thus \(F^* \subseteq U^*\) and \(G^* \cap U^* = \emptyset\). Since \(F \in \mathcal{F}\) and \(G \in \mathcal{G}\), \(\mathcal{F} \in F^*\) and \(\mathcal{G} \in G^*\). So
4 Application

Let $C(X)$ be the ring of all real valued continuous functions defined on X.

The construction of the universal Tychonoff space (or ρ-identification) of a topological space is as follows:

Let X be a topological space and \sim the equivalence relation on X defined by $x \sim y$ if and only if $f(x) = f(y)$ for all $f \in C(X)$.

Let $\rho(X)$ denote the set of equivalence classes and let $\theta : X \rightarrow \rho(X)$ be the canonical onto map assigning to each point of X its equivalence class.

Since every f in $C(X)$ is constant on each equivalence class, we can define $\rho(f) : \rho(X) \rightarrow \mathbb{R}$ by $\rho(f)(\theta(x)) = f(x)$.

Now equip $\rho(X)$ with the topology T_ρ whose closed sets are of the form $\cap \{\rho(f) \circ (\theta) : \alpha \in I\}$, where $f : X \rightarrow \mathbb{R}$ is a continuous map and F a closed set of \mathbb{R}. It is well known that, $(\rho(X), T_\rho)$ is a Tychonoff space [3].

The following remark has been given in [2]:

Remark 4.1 A closed set of $\rho(X)$ is of the form $\widehat{F} = \cap \{\rho(f) \circ (\theta) : f \in F\}$, where F is a subset of $C(X)$.

Using Proposition 3.3, the following lemma is immediate.

Lemma 4.2 Let X be a topological space. Then $\beta(\rho(X))$ is a Stone space if and only if for each disjoint closed sets F and H of $\rho(X)$, there exists a clopen set U of $\rho(X)$ such that $F \subseteq U$ and $G \cap U = \emptyset$.

Lemma 4.3 Let X be a topological space. Then $B = \{\widehat{f} = \cup_{x \in X} \theta(x) : f(x) = 0 \mid f \in C(X)\}$ is a base of closed sets of $\rho(X)$.

Proof 4.4 Let F be a subset of $C(X)$. It is immediate that $\widehat{F} = \cap \{\rho(f) \circ (\theta) : f \in F\} = \cap \{\theta(x) : x \in X \text{ and } \rho(f)(\theta(x)) = 0 \text{ and } f \in F\}$. Hence $\widehat{F} = \cap_{f \in F} (\cup_{x \in X} \theta(x) \mid f(x) = 0\}.

For the next lemma we denote by F_X the set $\cap \{f^{-1}(\{0\}) : f \in F\}$, where F be a subset of $C(X)$. Using Echi and Lazaar terminology [2] a set F_X is called a zero-closed (z-closed, for short) set of X. A z-closed set of X is called a zero-clopen (z-clopen for short) set of X if there exists a subsets G of $C(X)$ such that $X - H_X = G_X$.

The following lemma is an immediate consequence of the fact that for $x \in X, x \in H_X \cap G_X, f(x) = 0$, for each $f \in H \cup G$, if and only if $\theta(x) \in \widehat{H} \cap \widehat{G}$.
Lemma 4.5 Let X be a topological space, H and G two subsets of $C(X)$. Then $\hat{H} \cap \hat{G} = \emptyset$ if and only if $H_X \cap G_X = \emptyset$.

Proposition 4.6 Let X be a topological space. Then $\beta(\rho(X))$ is a Stone space if and only if for each two subset F and G of $C(X)$ such that $F_X \cap G_X = \emptyset$, there exists a z-clopen set U_X such that $F_X \subseteq U_X$ and $G_X \cap U_X = \emptyset$.

Acknowledgments
This paper has been supported by Deanship of Scientific research of University of Dammam under the reference 201032.

References

Received: December, 2012