Compactness in Product Spaces

WonSok Yoo

Department of Applied Mathematics
Kumoh National Institute of Technology
Kumi 730-701, Korea
wsyoo@kumoh.ac.kr

Abstract

We establish some basic facts for compactness in product spaces and then derive a series of important results in analysis and measure theory.

Mathematics Subject Classification: 54B10

Keywords: Product topology, Compactness, Equicontinuity, Uniformly countably additive family of measures

1 Introduction

Let $\Omega \neq \emptyset$ and X_ω be a topological space for each $\omega \in \Omega$. Let $\prod_{\omega \in \Omega} X_\omega$ be the product space with the product topology $\sigma\Omega$ which is the topology of coordinatewise convergence. For each $\omega \in \Omega$, $P_\omega : \prod_{\lambda \in \Omega} X_\lambda \to X_\omega$ is the projection such that

$$P_\omega((x_\lambda)_{\lambda \in \Omega}) = x_\omega, \quad \forall (x_\lambda)_{\lambda \in \Omega} \in \prod_{\lambda \in \Omega} X_\lambda.$$

If each X_ω is a topological vector space, then with the coordinatewise operations and the product topology $\sigma\Omega$, $\prod_{\omega \in \Omega} X_\omega$ is a topological vector space.

In this paper we would like to establish a basic proposition for compactness in the product space $\prod_{\omega \in \Omega} X_\omega$ and then we derive a series of important results in analysis and measure theory.

Observe that for $\omega \in \Omega$ and $S \subset \prod_{\omega \in \Omega} X_\omega$, $P_\omega(S) = \{x_\omega : (x_\lambda)_{\lambda \in \Omega} \in S\}$.

2 Main Results

Lemma 2.1. If $S \subset \prod_{\omega \in \Omega} X_\omega$ such that $P_\omega(S)$ is relatively compact in X_ω for each $\omega \in \Omega$, then S is relatively compact in $\prod_{\omega \in \Omega} X_\omega = (\prod_{\omega \in \Omega} X_\omega, \sigma\Omega)$.
Proof. By Tychonoff product theorem, $\prod_{\omega \in \Omega} P_\omega(S)$ is compact. If $(x_\lambda)_{\lambda \in \Omega} \in \overline{S}$, then there is a net $((x_{\alpha \lambda})_{\lambda \in \Omega})_{\alpha \in I}$ in S such that $((x_{\alpha \lambda})_{\lambda \in \Omega} \xrightarrow{\sigma_\Omega} (x_\lambda)_{\lambda \in \Omega}$, i.e., $\lim_{\alpha} x_{\alpha \lambda} = x_\lambda$ for each $\lambda \in \Omega$. Hence $\overline{S} \subseteq \prod_{\omega \in \Omega} P_\omega(S) \subseteq \prod_{\omega \in \Omega} P_\omega(S)$ since $\prod_{\omega \in \Omega} P_\omega(S)$ is closed in $\prod_{\omega \in \Omega} X_\omega ([2, p.100])$. But $\prod_{\omega \in \Omega} P_\omega(S)$ is compact and \overline{S} is closed in the compact $\prod_{\omega \in \Omega} P_\omega(S)$. Hence \overline{S} is compact in $\prod_{\omega \in \Omega} X_\omega$. \qed

Lemma 2.2. If X_ω is Hausdorff for each $\omega \in \Omega$ and S is relatively compact in $\prod_{\omega \in \Omega} X_\omega$, then $P_\omega(S)$ is relatively compact in X_ω for each $\omega \in \Omega$.

Proof. \overline{S} is compact in $\prod_{\omega \in \Omega} X_\omega$ and so $P_\omega(\overline{S})$ is compact in X_ω for each $\omega \in \Omega$. Since each X_ω is Hausdorff, $P_\omega(\overline{S})$ is closed so $P_\omega(\overline{S}) = \overline{P_\omega(S)}$ for all $\omega \in \Omega$. Moreover, if $(x_\lambda)_{\lambda \in \Omega} \in \overline{S}$, i.e., there is a net $((x_{\alpha \lambda})_{\lambda \in \Omega})_{\alpha \in I}$ in S such that $\lim_{\alpha} x_{\alpha \lambda} = x_\lambda$ for each $\lambda \in \Omega$, then $x_\omega = \lim_{\alpha} P_\omega((x_{\alpha \lambda})_{\lambda \in \Omega}) \in P_\omega(S)$ for each $\omega \in \Omega$ and so $(x_\omega)_{\omega \in \Omega} \in \prod_{\omega \in \Omega} P_\omega(S)$.

Hence $P_\omega(S)$ is compact in X_ω for each $\omega \in \Omega$. \qed

Corollary 2.3. If X_ω is Hausdorff for all $\omega \in \Omega$ and $S \subset \prod_{\omega \in \Omega} X_\omega$, then S is relatively compact in $\prod_{\omega \in \Omega} X_\omega$ if and only if $P_\omega(S)$ is relatively compact in X_ω for each $\omega \in \Omega$.

For topological space $Y = (Y, \tau)$ and $A \subset X \subseteq Y$, let

$$A^{(X, \tau)} = \{ z \in X : \exists \text{ net } (x_\alpha)_{\alpha \in I} \text{ in } A \text{ such that } x_\alpha \xrightarrow{\tau} z \}. $$

Theorem 2.4. Let $\Omega \neq \emptyset$ and X_ω be a Hausdorff topological vector space for each $\omega \in \Omega$ and F a vector subspace of $\prod_{\omega \in \Omega} X_\omega$, $S \subset F$. Let $\sigma \Omega$ be the product topology on $\prod_{\omega \in \Omega} X_\omega$. Then S is relatively compact in $(F, \sigma \Omega)$ if and only if

1. $\overline{S(\prod_{\omega \in \Omega} X_\omega, \sigma \Omega)} \subset F$, i.e., $\overline{S(\prod_{\omega \in \Omega} X_\omega, \sigma \Omega)} = \overline{S(F, \sigma \Omega)}$, and

2. $P_\omega(S)$ is relatively compact in X_ω for each $\omega \in \Omega$.

Proof. Suppose that $\overline{S(F, \sigma \Omega)}$ is compact in $(F, \sigma \Omega)$. With $\sigma \Omega$ and the coordinatewise operations, $\prod_{\omega \in \Omega} X_\omega$ and its vector subspace $(F, \sigma \Omega)$ are topological vector spaces and so the compact set $\overline{S(F, \sigma \Omega)}$ is complete in $(F, \sigma \Omega)$ ([1, p.75]).

Let $((x_{\alpha \omega})_{\omega \in \Omega})_{\alpha \in I}$ be a net in S such that $\lim_{\alpha} x_{\alpha \omega} \in (\prod_{\omega \in \Omega} X_\omega, \sigma \Omega)$. Since $S \subset F \subset \prod_{\omega \in \Omega} X_\omega$, the convergent net $((x_{\alpha \omega})_{\omega \in \Omega})_{\alpha \in I}$ is Cauchy in $(F, \sigma \Omega)$ and so $\lim_{\alpha} (x_{\alpha \omega})_{\omega \in \Omega} = (z_\omega)_{\omega \in \Omega} \in \overline{S(F, \sigma \Omega)} \subset F$. Since each X_ω is Hausdorff, $\prod_{\omega \in \Omega} X_\omega$ is Hausdorff ([4, p.92]) and so $((x_\omega)_{\omega \in \Omega} = (z_\omega)_{\omega \in \Omega} \in \overline{S(F, \sigma \Omega)} \subset F$. Hence $P_\omega(S)$ is relatively compact in X_ω for each $\omega \in \Omega$. \qed
Compactness in product spaces

\[\lim_{\alpha}(x_{\omega})_{\omega \in \Omega} = (z_{\omega})_{\omega \in \Omega}. \] Hence, \((x_{\omega})_{\omega \in \Omega} = (z_{\omega})_{\omega \in \Omega} \in F\) and so \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) = S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) \subset F\). Then \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) = S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) is compact in \((F, \sigma(\Omega))\) and so \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) is compact in \((\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\). Thus, \((2)\) holds by Lemma 2.2.

Conversely, suppose that both \((1)\) and \((2)\) hold for \(S\). By Lemma 2.1, \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) is compact in \((\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) but \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) \subset F\) so \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) is compact in \((F, \sigma(\Omega))\). \(\square\)

For a topological space \(X\) and \(\Omega \neq \emptyset\), let \(X^\Omega\) be the family of mappings from \(\Omega\) to \(X\), and letting \(X_\omega = X\) for each \(\omega \in \Omega\), the product space \((\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\) is homeomorphic with \((X^\Omega, \sigma(\Omega))\) by the correspondence \((f(\omega))_{\omega \in \Omega} \mapsto f\) for each \(f \in X^\Omega\). Then the following special case of Lemma 2.1 and Lemma 2.2 is a basic proposition in general topology ([4, p.218, Th.1]).

Corollary 2.5. Let \(X\) be a topological space and \(\Omega \neq \emptyset\), \(S \subset X^\Omega\). If \(S[\omega] = \{f(\omega) : f \in S\}\) is relatively compact for each \(\omega \in \Omega\), then \(S\) is relatively compact in \((X^\Omega, \sigma(\Omega))\) where \(\sigma(\Omega)\) is the topology of pointwise convergence on \(\Omega\). If, in addition, \(X\) is Hausdorff, then the converse implication also holds.

Corollary 2.6. Let \(X\) be a Hausdorff topological vector space, \(\Omega \neq \emptyset\) and \(F\) is a vector subspace of \(X^\Omega\), \(S \subset F\). With the topology \(\sigma(\Omega)\) of pointwise convergence on \(\Omega\), \(S\) is relatively compact in \((F, \sigma(\Omega))\) if and only if

1. \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) \subset F\), i.e., \(S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega)) = S(\prod_{\omega \in \Omega} X_{\omega}, \sigma(\Omega))\)

2. \(S[\omega] = \{f(\omega) : f \in S\}\) is relatively compact for each \(\omega \in \Omega\).

If \(X\) is locally convex and \(X' = \{x' \in \mathbb{C}^X : x'\text{ is linear and continuous}\}\), the dual of \(X\), then there is a beautiful duality theory for the pair \((X, X')\). However, it is possible that \(X' = \{0\}\) even for some Fréchet spaces such as \(\mathcal{M}(0, 1), L^p(0, 1)\) with \(0 < p < 1\) ([1, p.25]), etc. Hence every reasonable extension of \(X'\) will be interesting.

Let \(C(0) = \{\gamma \in \mathbb{C}^\mathbb{C} : \lim_{t \to 0} \gamma(t) = \gamma(0) = 0, |\gamma(t)| \geq |t| \text{ if } |t| \leq 1\}\). For a topological vector space \(X\), \(\gamma \in C(0)\) and \(U \in \mathcal{N}(X)\), the family of neighborhoods of \(0 \in X\), let

\[X^{(U, \gamma)} = \{f \in \mathbb{C}^X : f(0) = 0, f \text{ is continuous, for } x \in X, u \in U \text{ and } t \in \mathbb{C}, |t| \leq 1, \]
\[f(x + tu) = rf(x) + sf(u) \text{ where } |r - 1| \leq |\gamma(t)|, |s| \leq |\gamma(t)|\} \]

The usual dual \(X' \subset X^{(U, \gamma)}\) for all \(U \in \mathcal{N}(X)\) and \(\gamma \in C(0)\). Especially, it is possible that \(X' = \{0\}\) but \(X^{(U, \gamma)}\) is a large family ([6, 8]). Then we have a proper improvement of the Alaoglu-Bourbaki theorem as follows.

As usual, \(f_\alpha \to f\) in \((X^{(U, \gamma)}, \sigma X)\) means that \(f_\alpha(x) \to f(x)\) at each \(x \in X\), i.e., \(\sigma X\) is the weak * topology on \(X^{(U, \gamma)}\).
Theorem 2.7. Let X be a topological vector space and $U \in \mathcal{N}(X)$, $\gamma \in C(0)$. If $S \subseteq X^{(U,\gamma)}$ is equicontinuous, then S is relatively compact in $(X^{(U,\gamma)}, \sigma X)$, and for every $V \in \mathcal{N}(X)$, the polar $V^\circ = \{ f \in X^{(U,\gamma)} : |f(v)| \leq 1, \forall v \in V \}$ is compact in $(X^{(U,\gamma)}, \sigma X)$.

Proof. Suppose $S \subseteq X^{(U,\gamma)}$ and S is equicontinuous. It is easy to see that if $x_n \to x$ in X then $\lim_{n} f(x_n) = f(x)$ uniformly for $f \in S$ and so $S^{(\mathbb{C}^X, \sigma X)} \subseteq X^{(U,\sigma X)}$, $\sup_{x \in S} |f(x)| < +\infty$ at each $x \in X$, i.e., for each $x \in X$, $S[x] = \{ f(x) : f \in S \}$ is relatively compact in \mathbb{C}. By Corollary 2.6, S is relatively compact in $(X^{(U,\gamma)}, \sigma X)$.

Let $V \in \mathcal{N}(X)$. Then $V^\circ = \{ f \in X^{(U,\gamma)} : |f(x)| \leq 1, \forall x \in V \}$ is equicontinuous on X ([8, Corollary 3.6]) and V° is closed in $(X^{(U,\gamma)}, \sigma X)$. Thus, V° is compact in $(X^{(U,\gamma)}, \sigma X)$. \hfill \Box

There is a very important Vital-Hahn-Sakes-Graves-Ruess theorem ([3, 9]) says that if X is a locally convex space and S is a relatively compact subset in the measure space $(ca(\Sigma, X), \sigma \Sigma)$ with the topology $\sigma \Sigma$ of pointwise convergence on the σ-algebra Σ, i.e., $\mu \xrightarrow{\Sigma} \mu$ means that $\mu(A) \to \mu(A)$ at each $A \in \Sigma$, then S is uniformly countably additive, i.e., if $\{ A_j \} \subseteq \Sigma$ such that $A_i \cap A_j = \emptyset (i \neq j)$, then $\lim_{n} \sum_{j=1}^{n} \mu(A_j) = \mu(\bigcup_{j=1}^{\infty} A_j)$ uniformly for $\mu \in S$. In 2006, R. Zi, Y. Yang and C. Swartz (RYC) have improved this important result to the following

RYC’s theorem. Let X be a locally convex space and Σ a σ-algebra. If S is countably compact in $(ca(\Sigma, X), \sigma \Sigma)$, then S is uniformly countably additive ([7, Corollary 4.3]).

Theorem 2.8. Let X be a complete Hausdorff locally convex space and Σ a σ-algebra. Then for $S \subseteq ca(\Sigma, X)$, the following (I), (II) and (III) are equivalent.

(I) S is relatively compact in $(ca(\Sigma, X), \sigma \Sigma)$.

(II) S is uniformly countably additive and $\{ \mu(A) : \mu \in S \}$ is compact for each $A \in \Sigma$.

(III) $S^{(X^\Sigma, \sigma \Sigma)} \subseteq ca(\Sigma, X)$ and $\{ \mu(A) : \mu \in S \}$ is compact for each $A \in \Sigma$.

Proof. (I)⇒(II). By RYC’s theorem, S is uniformly countably additive. By Corollary 2.6, $\{ \mu(A) : \mu \in S \}$ is compact for each $A \in \Sigma$.

(II)⇒(III). Let $A_j \in \Sigma$, $A_i \cap A_j = \emptyset (i \neq j)$. Let $(\mu_\alpha)_{\alpha \in I}$ be a net in S such that $\mu_\alpha \xrightarrow{\Sigma} \mu \in X^\Sigma$. Since X is complete, $\mu(\bigcup_{j=1}^{\infty} A_j) = \lim_{\alpha} \mu_\alpha(\bigcup_{j=1}^{\infty} A_j) = \lim_{\alpha} \lim_{n} \sum_{j=1}^{n} \mu_\alpha(A_j) = \lim_{n} \lim_{\alpha} \sum_{j=1}^{n} \mu_\alpha(A_j) = \lim_{n} \sum_{j=1}^{\infty} \mu(A_j) = \sum_{j=1}^{\infty} \mu(A_j)$.

Thus, $\mu \in ca(\Sigma, X)$ and so $S^{(X^\Sigma, \sigma \Sigma)} \subseteq ca(\Sigma, X)$.

(III)⇒(I). Corollary 2.6. \hfill \Box
Now the famous Bartle-Dunford-Schwartz-Nikodým theorem ([5, p.305]) can be improved to the following.

Corollary 2.9. Let \(\Sigma \) be a \(\sigma \)-algebra. For \(S \subset \text{ca}(\Sigma, C) \), the following (i), (ii), (iii), (iv) and (v) are equivalent.

(i) \(S \) is weakly sequentially compact ([5, p.67]).

(ii) \(S \) is uniformly countably additive and \(\sup_{\mu \in S, A \in \Sigma} |\mu(A)| < +\infty \).

(iii) \(S \) is relatively compact in \((\text{ca}(\Sigma, C), \sigma) \).

(iv) \(S^{(C^\Sigma, \sigma)} \subset \text{ca}(\Sigma, C) \) and \(\sup_{\mu \in S} |\mu(A)| < +\infty \) for each \(A \in \Sigma \).

(v) \(S \) is uniformly countably additive and \(\sup_{\mu \in S} |\mu(A)| < +\infty \) for each \(A \in \Sigma \).

Proof. By Bartle-Dunford-Schwartz theorem ([5, p.305]), (i) and (ii) are equivalent.

By Theorem 2.8, (iii) is equivalent to the following.

(II') \(S \) is uniformly countably additive and \(\sup_{\mu \in S} |\mu(A)| < +\infty \) for each \(A \in \Sigma \).

By the Nikodým boundedness theorem ([5, p.309-310]), (II') is equivalent to (ii) and so (iii) \(\iff \) (ii) holds.

By Theorem 2.8, (iii) \(\iff \) (iv) \(\iff \) (v) holds.

A series of important facts in the basic theory of locally convex spaces are convenient consequences of Theorem 2.4.

Corollary 2.10. Banach space \(X \) is reflexive if and only if the unit ball \(B = \{ x \in X : \| x \| \leq 1 \} \) is weakly compact.

Proof. \(\Rightarrow \). If \(f \in B^{(C^X, \sigma X')} \), then there is a net \((x_\alpha)_{\alpha \in I} \) in \(B \) such that \(x_\alpha \xrightarrow{\sigma X'} f \) and so \(|f(x')| = \lim_{\alpha} |x_\alpha(x')| \leq \| x' \| \) for all \(x' \in X' \), i.e., \(f \in X'' = X, \| f \| \leq 1 \), \(f \in B \). Thus, \(B^{(C^X, \sigma X')} = B \subset X \). Since \(\sup_{x \in B} |x(x')| \leq \| x' \| < +\infty \) for each \(x' \in X' \), i.e., \(B[x'] \) is relatively compact in \(C \) for each \(x' \in X' \), Theorem 2.4 shows that \(B \) is compact in \((X, \sigma X') \).

\(\Leftarrow \). By Theorem 2.4, \(B^{(C^X, \sigma X')} \subset X \) and so \(B^{(C^X, \sigma X')} = B \). Then the Goldstine theorem shows that \(X'' = X \).

Corollary 2.11. A subset \(S \) of a locally convex space \(X \) is weakly compact if and only if \(S \) is bounded and complete in \((X, \sigma X') \).
Proof. \(\Rightarrow \). \(S \subset X \subset \mathbb{C}^{X'} \). By Theorem 2.4 and the Mackey theorem ([1, p.109]), \(S \) is bounded in \(X \). Since \(S \) is compact in \((X, \sigma X') \), \(S \) is complete in \((X, \sigma X') \) ([1, p.75]).

\(\Leftarrow \). If \((x_{\alpha})_{\alpha \in I} \) is a net such that \(x_{\alpha} \xrightarrow{\sigma X'} f \in \mathbb{C}^{X'} \), then \((x_{\alpha})_{\alpha \in I} \) is Cauchy in \((X, \sigma X') \) and so \(x_{\alpha} \xrightarrow{\sigma X'} f \in S \). Hence \(\overline{S}_{(\mathbb{C}^{X'}, \sigma X')} = S \subset X \) and \(S \) is weakly compact by Theorem 2.4.

Corollary 2.12. Let \(X \) be locally convex and \(S \subset X' \). Then \(S \) is weak * compact if and only if \(S \) is pointwise bounded on \(X \) and \(S \) is complete in \((X', \sigma X) \).

Proof. Theorem 2.4. \(\square \)

For \(A \subset X \), \(A^o = \{ f \in X' : |f(x)| \leq 1, \forall x \in A \} \).

Corollary 2.13. Let \(X \) be a locally convex space and \(S \subset X' \). The following (a), (b) and (c) are equivalent.

(a) \(S \cap U^o \) is compact in \((X', \sigma X) \), \(\forall U \in \mathcal{N}(X) \).

(b) \(S \cap U^o \) is closed in \((X', \sigma X) \), \(\forall U \in \mathcal{N}(X) \).

(c) If \((f_{\alpha})_{\alpha \in I} \) is an equiconstant net in \(S \) such that \(f_{\alpha} \xrightarrow{\sigma X} f \in \mathbb{C}^X \), then \(f \in S \).

Proof. (a) \(\Rightarrow \) (b). \((X', \sigma X) \) is Hausdorff and \(S \cap U^o \) is compact in \((X', \sigma X) \) for each \(U \in \mathcal{N}(X) \) and so (b) holds.

(b) \(\Rightarrow \) (c). \([(f_{\alpha})_{\alpha \in I}]^o \in \mathcal{N}(X) \), \((f_{\alpha})_{\alpha \in I} \subset S \cap [(f_{\alpha})_{\alpha \in I}]^o \) and \(f_{\alpha} \xrightarrow{\sigma X} f \). Then \(f \in S \cap [(f_{\alpha})_{\alpha \in I}]^o \) and so \(f \in S \).

(c) \(\Rightarrow \) (a). Let \(U \in \mathcal{N}(X) \). \(U \subset U^{oo} \), \(U^{oo} \in \mathcal{N}(X) \) and hence \(U^{oo} \) is equiconstant. Let \((f_{\alpha})_{\alpha \in I} \) be a net in \(S \cap U^o \) such that \(f_{\alpha} \xrightarrow{\sigma X} f \in \mathbb{C}^X \). By (c), \(f \in S \). But \(|f(u)| = \lim_{\alpha} |f_{\alpha}(u)| \leq 1 \) for all \(u \in U \) and so \(f \in X' \), \(f \in S \cap U^o \), \(S \cap U^{oo} = S \cap U^o \subset X' \). If \(x \in X \) and \(f \in S \cap U^o \), then \(\frac{1}{n_0} x \in U \) for some \(n_0 \in \mathbb{N} \) and so \(|f(\frac{1}{n_0} x)| \leq 1, |f(x)| \leq n_0 \), \(\{f(x) : f \in S \cap U^o\} \) is compact for each \(x \in X \). Thus, (a) follows from Theorem 2.4. \(\square \)

A topological vector space is BTB if each bounded set in \(X \) is totally bounded ([1, p.85]), e.g., \(\mathbb{R}^n \), \(\mathbb{C}^n \) and the space \(D \) of text functions, etc. If \(X \) is complete BTB, then bounded sets in \(X \) are relatively compact. Theorem 2.4 can be used to show that we have BTB spaces as many as all sets.

Corollary 2.14. If \(X \) is a complete BTB space, then for every \(\Omega \neq \emptyset \) the product space \((X^{\Omega}, \sigma \Omega) \) is a BTB space.
Compactness in product spaces

Proof. Let \(S \) be a bounded set in \((X^\Omega, \sigma_\Omega)\). Then \(\{g(\omega) : g \in S\} \) is totally bounded in \(X \) for each \(\omega \in \Omega \) and so \(\{g(\omega) : g \in S\} \) is compact in \(X \) for each \(\omega \in \Omega \). By Theorem 2.4 or Corollary 2.5, \(S \) is relatively compact in \((X^\Omega, \sigma_\Omega)\). Thus, \((X^\Omega, \sigma_\Omega)\) is BTB. \(\square \)

Corollary 2.15. Let \(X \) be a topological vector space and \(Y \) a complete Hausdorff BTB space, \(S \subset L(X,Y) = \{f \in Y^X : f \, \text{is linear and continuous}\} \).
If \(S \) is equicontinuous, then \(S(\mathcal{Y}^X, \sigma X) \) is compact in \((L(X,Y), \sigma X)\).

Proof. Since \(S \) is equicontinuous, \(S(\mathcal{Y}^X, \sigma X) \subset L(X,Y) \), i.e., \(S(\mathcal{Y}^X, \sigma X) = S'(L(X,Y), \sigma X) \).
By the equicontinuity of \(S \) again, \(S \) is pointwise bounded but the range space \(Y \) is complete BTB and so \(\{g(x) : g \in S\} \) is compact for each \(x \in X \). Then the desired follows from Theorem 2.4. \(\square \)

ACKNOWLEDGEMENTS. This research was supported by Kumoh National Institute of Technology.

References

Received: February, 2012