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Abstract

This paper studies equation ü(t) + q(t)f(t) = 0, t ∈ (0, 1) with four-
point boundary conditions u̇(0) = 0, u(1) = a1u(ξ) + a2u(η), where 0 <
ξ, η < 1, a1+a2 < 1. The existence result of positive solution is obtained
by applying the fixed point theorem in cones. The approaches developed
here extend the ideas and techniques derived in recent literatures.
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1 Introduction

It is well known, boundary value problems have been becoming an impor-
tant aspect in differential equations, one can read [1-8], etc. Many papers are
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concerned about them, especially to the existence of solution (include mul-
tiple solution, positive solution, periodic solution, and extreme solution). A
wide variety of approaches have been derived to this goal, such as nonlin-
ear alternative of Leray-Schauder [1,9], Mawhin’s continuation theorem [1,2],
Krasnoselskii fixed point theorem [1], upper and lower solution [1,10], mono-
tone iterative method [3], etc. Among them, multiple-point boundary value
problems have attracted much attention for their widely background in theory
and practical application. The study of multi-point boundary value problems
for linear second order ordinary differential equations was initiated by II’in and
Moiseev. Subsequently the more conclusions of nonlinear multi-point bound-
ary value problems appeared. Ma [12] studied positive solutions of a nonlinear
three-point boundary-value problem

ü(t) + a(t)f(t) = 0, t ∈ (0, 1)

with the boundary conditions

u(0) = 0, u(1) = αu(η),

where 0 < η < 1, and 0 < α < 1
η
.

Motivated by [12], in this paper, we consider the following problems

ü(t) + q(t)f(t) = 0 (1)

with the boundary conditions

u̇(0) = 0, u(1) = a1u(ξ) + a2u(η), (2)

where 0 < ξ, η < 1.
For convenience, we denote that

λ = max{ξ, η}, a = a1 + a2.

From now on, we assume the following:

(A1) f ∈ C([0,∞), [0,∞));

(A2) q ∈ C([0,∞), [0,∞)),

there exists x0 ∈ [λ, 1] such that q(x0) > 0.
Set

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

The paper is organized as follows: In section 2, we show some lemmas
which are necessary to the proof of our main result. In section 3, by applying
the fixed point theorem in cones, we obtain the main results for BVPs (1), (2).
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2 Preliminary Notes

In this section, we establish some lemmas which are necessary to develop the
main results in this paper.

Lemma 2.1 Let a1 + a2 6= 1, then for y ∈ C[0, 1], the problem

ü+ y(t) = 0, t ∈ (0, 1) (3)

u̇(0) = 0, u(1) = a1u(ξ) + a2u(η) (4)

has a unique solution

u(t) = −
∫ t

0
(t− s)y(s)ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)y(s)ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)y(s)ds− 1

a1 + a2 − 1

∫ 1

0
(1− s)y(s)ds.

(5)

Lemma 2.2 [11] Assume that ai, i = 1, 2, 3...,m − 2 have the same signal,
if the function x satisfies:

x(1) =
m−2∑
i=1

aix(ξi),

then exists η ∈ [ξ1, ξm−2] such that x(1) = αx(η), where α =
m−2∑
i=1

ai.

Lemma 2.3 Let a1 +a2 < 1. If for y ∈ C[0, 1] and y ≥ 0, then the problem
(3) and (4) has the unique solution u satisfies u ≥ 0, t ∈ C[0, 1].

Proof. From the fact that ü = −y(t) ≤ 0 we know that the graph of u(t)
is concave down on (0, 1) and by the unique solution we known the unique
solution is positive when t = 0.

If u(1) ≥ 0 then the concavity of u and the boundary condition u̇(0) = 0

imply that u̇(t) = −
∫ t

0
y(t)ds < 0 then u(t) is monotonous decrease function,

so it has u ≥ 0, t ∈ [0, 1].
If u(1) < 0,then it has u(β) < 0 and u(1) = au(β) > u(β), β ∈ (0, 1). This

contradicts the monotonous decrease function of u.

Lemma 2.4 Let a1 + a2 > 1, if y ∈ C[0, 1] and y(t) ≥ 0, t ∈ (0, 1). then
(3) and (4) has no positive solution.
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Proof. Assume that (3) and (4) has a positive solution u.
If u(1) > 0 then u(β) > 0 and u(1) = au(β) > u(β) this contradicts the

monotonous decrease function of u.
If u(1) = 0, and u(τ) > 0 for some τ ∈ (0, 1). Then u(β) = u(1) = 0, τ 6= β.
If τ ∈ (0, β), then u(τ) > u(β) = u(1) this contradicts the definition of the

concavity.
If τ ∈ (β, 1), then u(τ) > u(β) this contradicts the monotonous decrease

function of u.
If u(1) < 0, u(0) < 0 it has no solution;
u(1) < 0, u(0) ≥ 0, let u(t) = 0, β ∈ (0, t ], u(t) = au(β) contradicts;

β ∈ (t, 1), u(1) = au(β), it exists t1 ∈ (0, t ] such that u(t1) > 0. There is

u(t1)− u(β)

β − t1
=
u(t1)−

u(1)

a
t1 − β

<
u(t1)− u(1)

t1 − β
<
u(t1)− u(1)

t1 − 1
.

This contradicts the concavity of u, so u(t1) > 0 is not true.

Lemma 2.5 Let a1 + a2 < 1.If for y ∈ C[0, 1] and y ≥ 0,then the problem
(3) and (4) has the unique solution u satisfies inf

t∈[β,1]
u(t) ≥ γ‖u‖ where γ =

min{a(1− β)

1− aβ
, a} and a = a1 + a2.

Proof. When 0 < a < 1 by the monotonous

u(β) ≥ u(1).

Let
u(t) = ‖u‖.

If
t ≤ β < 1,

then
min
t∈[β,1]

u(t) = u(1),

and

u(t) ≤ u(1) +
u(1)− u(β)

1− β
(0− 1) ≤ u(1)(1−

1− 1

a
1− β

) = u(t)
1− aβ
a(1− β)

,

min
t∈[β,1]

u(t) ≥ a(1− β)

1− aβ
‖u‖.

If
β < t < 1,
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then

min
t∈[β,1]

u(t) = u(1),

by the monotonous

u(β) ≥ u(t),

u(1)

a
≥ u(t),

u(1) ≥ au(t),

min
t∈[β,1]

u(t) ≥ au(t) = a‖u‖.

3 Main Results

Theorem 3.1 Assume (A1) and (A2) hold. Then the problem (1) and (2)
has at least one positive solution in the case

(i)f0 = 0 and f∞ =∞ (superlinear)

or

(ii)f0 =∞ and f∞ = 0 (sublinear)

where 0 < a1 + a2 < 1.

Proof. (i) Superlinear case.

Suppose that f0 = 0 and f∞ = ∞. We wish to show the existence of a
positive solution of (1) and (2).

Now (1) and (2) has a solution y = y(t) if and only if y solves the operator
equation

y(t) = −
∫ t

0
(t− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds+

a2
a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

= Ay(t).
(6)

Denote

K = {y | y ∈ C[0, 1], y ≥ 0, min
λ≤t≤1

y(t) ≥ γ‖y‖},

λ = max{ξ, η}. It is obvious that K is a cone in C[0, 1]. Moreover AK ⊂ K.
It is also easy to check that A : K → K is completely continuous.
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Since f0 = 0, we may choose H1 > 0 such that f(y) ≤ εy, for 0 < y < H1

when ε > 0 satisfies
ε

1− a1 − a2

∫ 1

0
(1 − s)q(s)ds ≤ 1. Thus, if y ∈ K and

‖y‖ = H1, it has

Ay(t) = −
∫ t

0
(t− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

≤ − 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

≤ − 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)εy(s)ds

≤ ε

1− a1 − a2

∫ 1

0
(1− s)q(s)ds‖y‖

≤ ε

1− a1 − a2

∫ 1

0
(1− s)q(s)dsH1,

(7)
and we let

Ω1 = {y ∈ C[0, 1] | ‖y‖ < H1}. (8)

Then (7) shows that ‖Ay‖ ≤ y, for y ∈ K ⋂
∂Ω1.

Since f∞ =∞, there exists Ĥ2 > 0 such that f(u) ≥ ρu, for u ≥ Ĥ2 where
ρ > 0 such that

ργ

1− a1 − a2

∫ 1

λ
(1− s)q(s)ds ≥ 1. (9)

Let H2 = max{2H1,
Ĥ2

r
} and Ω2 = {y ∈ C[0, 1] | ‖y‖ < H2}, the y ∈ K

and ‖y‖ = H2 implies min
λ<t<1

y(t) ≥ γ‖y‖ ≥ H2.

Ay(λ) = −
∫ λ

0
(λ− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds
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≥ −
∫ λ

0
(λ− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ λ

0
(λ− s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ λ

0
(λ− s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

=
1

a1 + a2 − 1

∫ λ

0
(λ− s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

=
1

a1 + a2 − 1
(
∫ λ

0
(λ− s)q(s)f(y(s))ds−

∫ 1

0
(1− s)q(s)f(y(s))ds)

=
1

a1 + a2 − 1
(
∫ λ

0
λq(s)f(y(s))ds−

∫ λ

0
sq(s)f(y(s))ds

−
∫ 1

0
q(s)f(y(s))ds+

∫ 1

0
sq(s)f(y(s))ds)

≥ 1

a1 + a2 − 1
(
∫ 1

λ
sq(s)f(y(s))ds−

∫ 1

λ
q(s)f(y(s))ds)

=
1

a1 + a2 − 1

∫ 1

λ
(s− 1)q(s)f(y(s))ds

≥ ρ

a1 + a2 − 1

∫ 1

λ
(s− 1)q(s)y(s)ds.

(10)
Hence, for y ∈ K ⋂

∂Ω2,

‖Ay‖ ≥ ργ

1− a1 − a2

∫ 1

λ
(1− s)q(s)ds‖y‖ ≥ ‖y‖.

Therefore, by the Fixed Point Theorem, it follows that A has a fixed point in
K

⋂
(Ω \ Ω1) such that H1 ≤ ‖u‖ ≤ H2. This completes the superlinear part

of the theorem.

(ii) Sublinear case.

Suppose next that f0 =∞ and f∞ = 0 choose H3 > 0 such that f(y) ≥My
for 0 < y < H3 where

Mγ

1− a1 − a2

∫ 1

λ
(s− 1)q(s)y(s)ds ≥ 1. (11)

By using the method to get (10), we can get that
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Ay(λ) = −
∫ λ

0
(λ− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

≥ 1

a1 + a2 − 1

∫ 1

λ
(s− 1)q(s)f(y(s))ds

≥ M

a1 + a2 − 1

∫ 1

λ
(s− 1)q(s)y(s)ds

≥ Mγ

a1 + a2 − 1

∫ 1

λ
(s− 1)q(s)y(s)ds‖y‖

= H3.
(12)

Thus, we may let Ω3 = {y ∈ C[0, 1] | ‖y‖ < H3} such that

‖Ay‖ ≥ ‖y‖, y ∈ K
⋂
∂Ω3.

Now, since f∞ = 0, exists H4 > 0 such that f(y) ≤ ϕy for y ≥ H4 where ϕ > 0

satisfies
N

1− a1 − a2

∫ 1

0
(1− s)q(s)y(s)ds ≤ 1.

We consider two cases:
Case(i). Support f is bounded, say f(y) ≤ N for all y ∈ [0,∞) choose

H4 = max{2H3,
N

1− a1 − a2

∫ 1

0
(1−s)q(s)ds} such that, for y ∈ K with ‖y‖ =

H4. We have

Ay(t) = −
∫ t

0
(t− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

≤ 1

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)f(y(s))ds

≤ N

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)y(s)ds

≤ N

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)ds‖y‖

≤ H4,
(13)
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therefore ‖Ay‖ ≤ ‖y‖.
Case(ii). If f is unbounded, we know from (A1) that there is H4: H4 >

max{2H3,
1

γ
H4} such that f(y) ≤ f(H4) for 0 < y ≤ H4(we are able to do

this since f is unbounded). Then for y ∈ K and ‖y‖ = H4,we have

Ay(t) = −
∫ t

0
(t− s)q(s)f(y(s))ds+

a1
a1 + a2 − 1

∫ ξ

0
(ξ − s)q(s)f(y(s))ds

+
a2

a1 + a2 − 1

∫ η

0
(η − s)q(s)f(y(s))ds

− 1

a1 + a2 − 1

∫ 1

0
(1− s)q(s)f(y(s))ds

≤ 1

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)f(y(s))ds

≤ 1

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)f(H4)ds

≤ 1

a1 + a2 − 1

∫ 1

0
(s− 1)q(s)ϕH4ds

≤ H4.
(14)

Therefore, in either case we may put Ω4 = {y ∈ C[0, 1] | ‖y‖ < H4} and for
y ∈ K

⋂
∂Ω4, we may have ‖Ay‖ ≤ ‖y‖. By the Fixed Point Theorem, it

follows that the bounded valuable problem (1) and (2) has a positive solution.
Therefore, we complete the proof of the theorem.
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