Uniformly Harmonic Starlike Functions of Complex Order

Syed Zakar Hussain Bukhari, Malik Ali Raza

Department of Mathematics
Mirpur University of Science and Technology (MUST)
Mirpur-10250(AJK), Pakistan

Bushra Malik

Department of Mathematics
COMSATS Institute of Information Technology
Islamabad, Pakistan

Abstract

In this paper, we introduce and investigate a new class of p-valent harmonic starlike functions of complex order b. We study various properties of this class including coefficient conditions, distortion bounds, extreme points, convex combination and find their connection with the already known classes.

Mathematics Subject Classification: Primary: 30C45, Secondary 31A05

Keywords: Analytic, harmonic and multivalent functions

1 Introduction

A continuous function $f(z) = u(x, y) + iv(x, y)$ is harmonic in a complex domain D, if both u and v are real harmonic in D. Various classes of harmonic functions have been extensively investigated in the literature of the subject, for
example, see [6, 10, 13, 14] and others with references there in. In any simply connected domain, we can write \(f(z) = l(z) + k(z) \), where \(l \) and \(k \) are analytic in \(U \). We call \(l \) the analytic part and \(k \) the co-analytic part of \(f \). We note that \(f(z) = l(z) + k(z) \) reduces to \(l \) if the co-analytic part \(k \) is zero. For \(p \geq 1 \), let \(H(p) \) denote the class all multivalent harmonic functions \(f(z) = l(z) + k(z) \) defined in the open unit disk \(U = \{ z : |z| < 1 \} \), where

\[
l(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad \text{and} \quad k(z) = \sum_{n=p+1}^{\infty} b_n z^n, \quad |b_{p+t-1}| < 1, t \in N. \tag{1}
\]

Let \(F(z) = L(z) + \overline{K(z)} \) be a fixed multivalent harmonic function, where

\[
L(z) = z^p + \sum_{n=p+1}^{\infty} |A_n| z^n \quad \text{and} \quad K(z) = \sum_{n=p+1}^{\infty} |B_n| z^n, \quad |B_{p+t-1}| < 1, t \in N. \tag{2}
\]

For \(m \geq 0, b \in C \setminus \{0\} \) and \(p \in N \), the class \(MH_F(p, t, b, m) \) consists of functions \(f \in H(p) \) satisfying the condition

\[
\Re \left(p + \frac{1}{b} \left(\frac{z(f \ast F)'(z)}{z'(f \ast F)(z)} - p \right) \right) \geq m \left| \frac{1}{b} \left(\frac{z(f \ast F)'(z)}{z'(f \ast F)(z)} - p \right) \right| \quad (z \in U), \tag{3}
\]

where \(f \ast F \) is a convolution of \(f \) and \(F \) and \(z' = \frac{\partial}{\partial z}(re^{i\theta}), f'(z) = \frac{\partial}{\partial z}(re^{i\theta}) \).

From the fact \(\Re(w) > m |w - p| \) if and only if \(\Re((1 + me^{i\theta})w - mpe^{i\theta}) \geq 0 \), it follows that (3) is equivalent to:

\[
\Re \left((1 + me^{i\theta}) \left(p + \frac{1}{b} \left(\frac{z(f \ast F)'(z)}{z'(f \ast F)(z)} - p \right) \right) - mpe^{i\theta} \right) \geq 0 \quad (z \in U). \tag{4}
\]

A function \(f \) in the class \(MH_F(p, t, b, m) \) is called \(m \)-uniformly multivalent harmonic starlike of complex order \(b \) associated with a fixed multivalent harmonic function \(F \). For \(b = 1 - \beta \), we obtain the class \(H_F(p, t, \beta, m) \) studied in [2]. In the class \(MH_F(p, t, b, m) \), if we take: \(F(z) = I(z) = z^p + \sum_{n=p+1}^{\infty} z^n + \sum_{n=p+t}^{\infty} \overline{z^n} \), we have various known classes as special cases for specific choices of parameters, for detail, see [2, 3, 4, 5, 7, 8, 9, 11, 12]. Let \(TH(p) \subset H(p) \) consisting of functions \(f(z) = l(z) + \overline{k(z)} \) such that

\[
l(z) = z^p - \sum_{n=p+t}^{\infty} |a_n| z^n \quad \text{and} \quad k(z) = \sum_{n=p+1}^{\infty} |b_n| z^n \quad (z \in U). \tag{5}
\]

We take \(MH_{TH}(p, t, b, m) = TH(p) \cap MH_F((p, t, b, m)) \).
2 Results and Discussion

Theorem 2.1. Let \(f(z) = l(z) + k(\overline{z}) \), where \(l \) and \(k \) are given by (1) and let \(F \) be a fixed \(p \)-valent harmonic function given by (2). Then \(f \in MH_F(p, t, b, m) \), if for \(m_2 = 1 + m \geq -1 \), we have

\[
\sum_{n=p+t}^{\infty} \frac{nm_2 - p(m_2 - |b|)}{|pb + b| - |pb - b|} |a_n A_n| + \sum_{n=p+t-1}^{\infty} \frac{nm_2 + p(m_2 - |b|)}{|pb + b| - |pb - b|} |b_n B_n| \leq \frac{1}{2},
\]

where \(b \in \mathbb{C} \setminus \{0\} \), and \(p, t \in \mathbb{N} \).

Proof. Let \(f = l + k \in MH_F(p, t, b, m) \) where \(l \) and \(k \) are given by (1) and also let \(F \) be a fixed \(p \)-valent harmonic function given by (2). Then for \(m_1 = 1 + me^{i\theta} \) and in view of (3) and (4), we write

\[
\Re \left[\frac{m_1[z(l \ast L)'(z) - z(k \ast K)'(z)] - p[m_1 - b][(l \ast L)(z) + (k \ast K)(z)]}{b[(l \ast L)(z) + (k \ast K)(z)]} \right] \geq 0.
\]

Using the fact \(\Re (w) > 0 \) if and only if \(|1 + w| \geq |1 - w| \), it is sufficient to show that \(|1 + w| - |1 - w| \geq 0 \). Now, for \(\psi = p(m_1 - b) - b \), we have

\[
|1 + w| = |pb + b|z^p + \sum_{n=p+t}^{\infty} [nm_1 - \psi] a_n |A_n| z^n - \sum_{n=p+t-1}^{\infty} [nm_1 + \psi] b_n |B_n| z^n,
\]

and

\[
|1 - w| = |pb - b|z^p + \sum_{n=p+t}^{\infty} [nm_1 - \psi] a_n |A_n| z^n - \sum_{n=p+t-1}^{\infty} [nm_1 + \psi] b_n |B_n| z^n.
\]

As we take \(m_1 = 1 + m e^{i\theta} \). So for \(|m_1| \leq 1 + m |e^{i\theta}| \leq 1 + m = m_2 \), we have

\[
|1 + w| - |1 - w| \geq [(|pb + b| - |pb - b|)]|z^p| - \sum_{n=p+t}^{\infty} 2[nm_2 - p(m_2 - |b|)] a_n |A_n| |z^n| - \sum_{n=p+t-1}^{\infty} 2[nm_2 + p(m_2 - |b|)] b_n |B_n| |z^n|.
\]

Thus for \(b_1 = p(m_2 - |b|) \), we write

\[
|1 + w| - |1 - w| \geq [(|pb + b| - |pb - b|)]|z^p| + \sum_{n=p+t}^{\infty} \frac{2[nm_2 - b_1]}{|pb + b| - |pb - b|} |a_n A_n| + \sum_{n=p+t-1}^{\infty} \frac{2[nm_2 + b_1]}{|pb + b| - |pb - b|} |b_n B_n| - 1.
\]
For condition (6), we obtain the desired result. The bounds in (6) are sharp for
\[f(z) = z^p + \sum_{n=p+1}^{\infty} \frac{|pb+b| - |pb-b|}{2[nm_2 - p(m_2 - |b|)]} X_n z^n + \sum_{n=p+t}^{\infty} \frac{|pb+b| - |pb-b|}{2[nm_2 + p(m_2 - |b|)]} Y_n z^n, \]
where \(\sum_{n=p+t}^{\infty} |X_n| + \sum_{n=p+t-1}^{\infty} |Y_n| = 1. \)

Corollary 2.2. For \(p \geq \frac{1}{|b|} \), if
\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] |a_n A_n| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] |b_n B_n| < |b|,
\]
holds, then \(f \in MH_F(p, t, b, m) \), where \(b_1 = p(m_2 - |b|) \). For \(1 \leq p \leq \frac{1}{|b|} \), if
\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] |a_n A_n| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] |b_n B_n| < p |b|,
\]
holds, then \(f \in MH_F(p, t, b, m) \) for \(b_1 = p(m_2 - |b|) \).

Now, we study the characterization of functions in \(MH_F(p, t, b, m) \).

Theorem 2.3. Let \(f = l + \bar{K} \) be such that \(l \) and \(k \) are given by (5) and let \(F \) be a fixed \(p \)-valent harmonic function given by (2) and \(b \in C \setminus \{0\} \). Also, assume that \(m_1 = 1 + m e^{i\theta}, m_2 = 1 + m \geq -1 \) and \(b_1 = p(m_2 - |b|) \). Then
(i) for \(1 \leq p \leq \frac{1}{|b|} \), \(f \in MH_F(p, t, b, m) \) if and only if
\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] |a_n A_n| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] |b_n B_n| < p |b|. \tag{7} \]
and (ii) for \(p |b| \geq 1 \), \(f \in MH_F(p, t, b, m) \) if and only if
\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] |a_n A_n| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] |b_n B_n| < |b|. \tag{8} \]

Proof. Since \(MH_F(p, t, b, m) \subset MH_F(p, t, b, m) \), we only need to prove the only if. As in Corollary 2.2, we show that if the condition (7) does not hold, then \(f \notin MH_F(p, t, b, m) \), that is, we must have
\[
N = \text{Re} \left[m_1 [z(l * L)'(z) - z(k * K)'(z)] - p[m_1 - b][(l * L)(z) + (k * K)(z)] \right] \geq 0. \tag{9} \]
Substituting the value \(z < r < 1, b = |b| \) and using \(\text{Re}(-e^{i\theta}) \geq -|e^{i\theta}| = -1 \), the inequality (9) reduces to
where \(\beta = p[m_2 - |b|][r^p - \sum_{n=p+1}^\infty b_n |B_n|^r] \). Letting \(r \to 1^- \), we obtain

\[
 R \geq \frac{p|b| - \sum_{n=p+1}^\infty [n m_2 - b_1]a_n |A_n| - \sum_{n=p+1}^\infty [n m_2 + b_1]b_n |B_n|}{|b| \left(1 - \sum_{n=p+1}^\infty a_n |A_n| + \sum_{n=p+1}^\infty b_n |B_n|\right)}
\]

If the condition (9) does not hold, then numerator in (10) is negative for \(r \) sufficiently close to 1. Hence there exist \(z_o = r_o \) in \((0, 1)\) for which (10) is negative. Therefore, \(f \notin MH_\mathbb{T}(p, t, b, m) \) and so the proof is complete.

Theorem 2.4. If \(f \in MH_\mathbb{T}(p, t, b, m) \), then for \(|z| = r < 1 \), \(|A_{p+t}| \leq |A_n| \leq |B_n|, m_2 = 1 + m \geq -1 \), and \(b_1 = p(m_2 - |b|), b \in C \setminus \{0\} \) and \(A_{p+t} \neq 0 \),

\[
|f(z)| \leq \begin{cases}
 b_{\beta} r^{p+t-1} + \frac{p|b|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|} - \frac{[(p+t-1)m_2+b_1]|b_{p+t-1}|B_{p+t-1}|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|}, & p|b| \leq 1 \\
 b_{\beta} r^{p+t-1} + \frac{p|b|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|} - \frac{[(p+t-1)m_2+b_1]|b_{p+t-1}|B_{p+t-1}|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|}, & p|b| \geq 1
\end{cases}
\]

where \(b_\beta = 1 + |b_{p+t-1}| \) and

\[
|f(z)| \geq \begin{cases}
 b_{\gamma} r^{p+t-1} - \frac{p|b|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|} + \frac{[(p+t-1)m_2+b_1]|b_{p+t-1}|B_{p+t-1}|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|}, & p|b| \leq 1 \\
 b_{\gamma} r^{p+t-1} - \frac{p|b|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|} + \frac{[(p+t-1)m_2+b_1]|b_{p+t-1}|B_{p+t-1}|r^{p+1}}{|(p+t)m_2-b_1||A_{p+t}|}, & p|b| \geq 1
\end{cases}
\]

where \(b_\gamma = 1 - |b_{p+t-1}| \). These bounds are sharp.

Using (5) and Theorem 2.1, we obtain the desired proof.

Theorem 2.5. A function \(f \in clcoMH_\mathbb{T}(p, t, b, m) \), if and only if

\[
f(z) = \sum_{p+t-1}^{\infty} (X_n l_n(z) + Y_n k_n(z)), l_{p+t-1}(z) = z^p, z \in U,
\]

\[
l_n(z) = \begin{cases}
 z^p - \frac{p|b|}{|nm_2-b_1||A_n|} z^n; & (n = p + t, p + t + 1, \ldots), \ p|b| \leq 1 \\
z^p - \frac{p|b|}{|nm_2-b_1||A_n|} z^n; & (n = p + t, p + t + 1, \ldots), \ p|b| \geq 1
\end{cases}
\]

and

\[
k_n(z) = \begin{cases}
 z^p + \frac{p|b|}{|nm_2+b_1||B_n|} z^n; & (n = p + t - 1, p + t, \ldots), \ p|b| \leq 1 \\
z^p + \frac{p|b|}{|nm_2+b_1||B_n|} z^n; & (n = p + t - 1, p + t, \ldots), \ p|b| \geq 1
\end{cases}
\]
where \(X_{p+t-1} \equiv X_p = 1 - \sum_{n=p+1}^{\infty} X_n - \sum_{n=p+t-1}^{\infty} Y_n, X_n \geq 0, Y_n \geq 0, m_2 = 1 + m \geq -1 \) and \(b_1 = p(m_2 - |b|) \). In particularly, the extreme points of \(MH_\mathcal{T}(p, t, b, m) \) are \(\{l_n\} \) and \(\{k_n\} \).

Proof. Suppose \(p|b| \leq 1 \). For function of the form (11), we can write

\[
f(z) = z^p - \sum_{n=p+t}^{\infty} \frac{p \ |b| |X_n z^n|}{|nm_2 - b_1||A_n|} + \sum_{n=p+t-1}^{\infty} \frac{p \ |b| Y_n z^n}{|nm_2 + b_1||A_n|},
\]

On the other hand, for \(0 \leq X_p \leq 1 \), we get

\[
\sum_{n=p+t}^{\infty} \frac{[nm_2 - b_1]|A_n||p \ |b| X_n}{|nm_2 - b_1||A_n|} + \sum_{n=p+t-1}^{\infty} \frac{[nm_2 + b_1]|B_n||p \ |b| Y_n}{|nm_2 + b_1||B_n|} = \sum_{n=p+t}^{\infty} (X_n + Y_n) + Y_{p+t-1} \leq 1.
\]

Thus, by Theorem 2.1, we have \(f \in MH_\mathcal{T}(p, t, b, m) \). Conversely, suppose \(f \in MH_\mathcal{T}(p, t, b, m) \). Then, it follows Theorem 2.1 that \(|a_n| \leq \frac{p|b|}{|nm_2 - b_1||A_n|}, |b_n| \leq \frac{p|b|}{|nm_2 + b_1||B_n|} \). Setting \(X_n = \frac{[nm_2 - b_1]|a_n| A_n}{p|b|}, Y_n = \frac{[nm_2 + b_1]|b_n| B_n}{p|b|} \) and defining \(X_p = 1 - \left(\sum_{n=p+t}^{\infty} X_n + \sum_{n=p+t-1}^{\infty} Y_n \right) \), where \(X_p \geq 0 \), we obtain

\[
f(z) = z^p - \sum_{n=p+t}^{\infty} |a_n| z^n + \sum_{n=p+t-1}^{\infty} |b_n| z^n
\]

\[
= z^p - \sum_{n=p+t}^{\infty} X_n z^n + \sum_{n=p+t-1}^{\infty} Y_n z^n + \sum_{n=p+t}^{\infty} l_n(z) X_n + \sum_{n=p+t-1}^{\infty} k_n(z) Y_n
\]

\[
= X_p z^p + \sum_{n=p+t}^{\infty} l_n(z) X_n + \sum_{n=p+t-1}^{\infty} k_n(z) Y_n.
\]

Thus \(f \) can be written as (11). The proof for the case \(p|b| \geq 1 \) is similar.

Theorem 2.6. The class \(MH_\mathcal{T}(p, t, b, m) \) is closed.

Proof. For \(j = 1, 2, \ldots \), let \(f_j(z) = z^p - \sum_{n=p+t}^{\infty} |a_{j,n}| z^n + \sum_{n=p+t-1}^{\infty} |b_{j,n}| z^n \), belong to the class \(MH_\mathcal{T}(p, t, b, m) \). For \(\sum_{j=1}^{\infty} \mu_j = 1, 0 \leq \mu_j \leq 1 \), the convex combination of \(f_j \) is expressed as

\[
\sum_{j=1}^{\infty} \mu_j f_j(z) = z^p - \sum_{n=p+t}^{\infty} \sum_{j=1}^{\infty} \mu_j |a_{j,n}| z^n + \sum_{n=p+t-1}^{\infty} \sum_{j=1}^{\infty} \mu_j |b_{j,n}| z^n.
\]

Also \(F_j : F_j(z) = z^p + \sum_{n=p+t}^{\infty} |A_{j,n}| z^n + \sum_{n=p+t-1}^{\infty} |B_{j,n}| z^n \), we have

\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] |a_{j,n} A_{j,n}| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] |b_{j,n} B_{j,n}| \leq \begin{cases} p|b| & \text{if } p|b| \leq 1 \\ |b| & \text{if } p|b| \geq 1 \end{cases}
\].
and from (11), we write

\[
\sum_{n=p+t}^{\infty} [nm_2 - b_1] \sum_{j=1}^{\infty} \mu_j |a_{j,n}A_{j,n}| + \sum_{n=p+t-1}^{\infty} [nm_2 + b_1] \sum_{j=1}^{\infty} \mu_j |b_{j,n}B_{j,n}|
\]

\[
\leq \left\{ p \left| \sum_{j=1}^{\infty} \mu_j = p \right| \sum_{j=1}^{\infty} \mu_j \right| \begin{cases} p \left| b \right| & \text{if } p \left| b \right| \leq 1 \\
 \left| b \right| \sum_{j=1}^{\infty} \mu_j & \text{if } p \left| b \right| \geq 1 \end{cases}
\right.

Thus the coefficient estimate given by Theorem 2.1 holds. Therefore, we get \(\sum_{j=1}^{\infty} \mu_j f_j(z) \in MH_F(p, t, b, m) \).

Acknowledgements. The authors would like to thank Honorable Rector CIIT, Islamabad Prof. Dr. SM Junaid Zaidi (HI, SI) and Worthy Vice Chancellor MUST, Mirpur Prof. Dr. Habib-ur-Rahman (FCSP, SI) for their untiring efforts for the promotion of research conducive environment in their relevant Institutions.

References

https://doi.org/10.5186/aasfm.1984.0905

https://doi.org/10.4134/bkms.2005.42.3.563

https://doi.org/10.1006/jmaa.1999.6377

Received: December 21, 2016; Published: January 24, 2017