Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 6, 283 - 293
HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/nade.2016.6311

q-Harmonic Mappings for which
Analytic Part is q-Convex Functions

Kaya Ademoğulları and Yasemin Kahramaner

Department of Mathematics
İstanbul Ticaret University, İstanbul, Turkey

Yaşar Polatoğlu

Department of Mathematics and Computer Sciences
İstanbul Kültür University, İstanbul, Turkey

Copyright © 2016 Kaya Ademoğulları, Yasemin Kahramaner and Yaşar Polatoğlu. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the present article we will examine the subclass of planar harmonic mappings. Let $h(z)$ and $g(z)$ are analytic functions in the open unit disc $D = \{ z \mid |z| < 1 \}$ and having the power series representation $h(z) = z + a_2z^2 + \ldots$ and $g(z) = b_1z + b_2z^2 + \ldots$. If $f = h(z) + \overline{g(z)}$ be the solution of the non-linear partial differential equation $w_q(z) = \left(\frac{D_qg(z)}{D_qh(z)} \right) = \frac{f\bar{z}}{f_z}$ with $|w_q(z)| < 1$, $h(z)$ q-convex function, then this class is called q-harmonic mappings for which analytic part is q-convex functions and the class of such functions is denoted by $SHC(q)$, where $D_qh(z) = \frac{h(z) - h(qz)}{1 - qz} = f_z$, $D_qg(z) = \frac{g(z) - g(qz)}{1 - qz} = \bar{f}_\bar{z}$, $q \in (0, 1)$.

Mathematics Subject Classification: 3045

Keywords: q-harmonic mappings, growth theorem, distortion theorem
1 Introduction

A planar harmonic mapping in the open unit disc \mathbb{D} is a complex valued function f which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is simply connected domain the mapping f has a canonical representation $f = h(z) + \overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic functions in \mathbb{D} and have the following power series.

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n$$

where $a_n, b_n \in \mathbb{C}$, $n = 0, 1, 2, \ldots$ and usual we call $h(z)$ the analytic part of f and $g(z)$ is co-analytic part of f. An elegant and complete account theory of harmonic mappings is given Duren’s monograph [3]. Lewy [6] proved in 1936 that the harmonic function f is locally univalent in \mathbb{D}, if and only if its Jacobian $J_f(z) = |h'(z)|^2 - |g'(z)|^2$ is different from zero in \mathbb{D}. In view of this result locally univalent harmonic mapping in the open unit disc \mathbb{D} are either sense-preserving if $|h'(z)| > |g'(z)|$ in \mathbb{D} or sense-reserving if $|g'(z)| > |h'(z)|$ in \mathbb{D}.

Through this paper we will restrict ourselves to the study of sense-preserving harmonic mappings. We also note that $f = h(z) + \overline{g(z)}$ is sense-preserving in \mathbb{D} if and only if $h'(z)$ does not vanish in \mathbb{D} and the second dilatation $w(z) = \frac{g'(z)}{h'(z)}$ has the property $|w(z)| < 1$ for every $z \in \mathbb{D}$. (In other words f is the solution of non-linear partial differential equation $w(z) = \frac{f_z}{h_z}$ with $|w(z)| < 1$.) Therefore the class of all sense-preserving harmonic mappings in the open unit disc with $a_0 = b_0 = 0$, $a_1 = 1$ will be denoted by S_H. Thus S_H contains standart class of univalent functions. The family of all mappings $f \in S_H$ with the additional property $g'(0) = 0$, i.e. $b_1 = 0$ is denoted by S_H^0. Hence it is clear that $S \subset S_H^0 \subset S_H$.

In this paragraph of this paper we will give the concept of the q-calculus. If $q \in (0, 1)$ fixed, a subset \mathbb{B} of \mathbb{C} is geometric set if $qz \in \mathbb{B}$, whenever $z \in \mathbb{B}$. If a subset \mathbb{B} of \mathbb{C} is a geometric set, then it contains all geometric sequences $\{zq^n\}_{0}^{\infty}$, $qz \in \mathbb{B}$. Let f be a function (real or complex valued) defined on geometric set \mathbb{B}, $|q| \neq 1$. The q-difference operator which was introduced by Jackson F.H. [1],[5] and E.Heine or Euler [1],[5], defined by

$$D_q f(z) = \frac{f(z) - f(qz)}{(1-q)z}, \text{ for } z \in \mathbb{B} \setminus \{0\} \quad (1.1)$$

The q-difference operator (1.1) sometimes called Jackson difference operator if $0 \in \mathbb{B}$, the q-derivative at zero defined by for $|q| < 1$

$$D_q f(z) = \lim_{n \to \infty} \frac{f(zq^n) - f(0)}{zq^n}, \text{ for } z \in \mathbb{B} \setminus \{0\} \quad (1.2)$$
provided the limit exists and does not depend on \(z \), in addition \(q \)-derivative at zero defined by for \(|q| < 1 \)

\[
D_q f(0) = D_{q^{-1}} f(0)
\]

(1.3)

Under the hypothesis of the definition of the \(q \)-difference operator, then we have the following rules [1],[5]

1) For a function \(f(z) = z^n \),

\[
D_q f(z) = D_q z^n = \frac{1 - q^n}{1 - q} z^{n-1}
\]

2) Let \(f(z) \) and \(g(z) \) be defined on a \(q \)-geometric set \(B \subset \mathbb{C} \) such that \(q \)-derivatives of \(f \) and \(g \) exists for all \(z \in B \), then

(i) \(D_q (af(z) \pm bg(z)) = aD_q f(z) \pm bD_q g(z) \), where \(a \) and \(b \) are real or complex constants.

(ii) \(D_q (f(z).g(z)) = g(z).D_q f(z) + f(qz)D_q g(z) \)

(iii) \[
D_q \left(\frac{f(z)}{g(z)} \right) = \frac{g(z)D_q f(z) - f(qz)D_q g(z)}{g(z).g(qz)}
= \frac{g(qz)D_q f(z) - f(qz)D_q g(z)}{g(z).g(qz)}, \quad g(z).g(qz) \neq 0
\]

(iv) As a right inverse Jackson [1], [5] introduced \(q \)-integral

\[
\int_{0}^{z} f(t) d_q t = z(1 - q) \sum_{n=0}^{\infty} q^n f(zq^n)
\]

provided that the series converges. The following theorem is analogue of the fundamental theorem of calculus.

Theorem 1.1 ([1],[5]). Let \(f \) be a \(q \)-regular at zero, function defined on \(q \)-geometric set \(B \) containing zero. Define

\[
F(z) = \int_{c}^{z} f(\zeta) d_q \zeta, \quad (z \in \mathbb{B})
\]

where \(c \) is a fixed point in \(B \), then \(F \) is \(q \)-regular at zero, furthermore \(D_q F(z) \) exists for every \(z \in \mathbb{B} \) and

\[
D_q F(z) = f(z)
\]
for $z \in \mathbb{B}$.

Conversely: If a and b are two points in \mathbb{B}, then

$$\int_{a}^{b} D_q f(\zeta)d_q\zeta = f(b) - f(a)$$

3) The q-differential is defined as,

$$d_qf(z) = f(z) - f(qz),$$

therefore

$$D_q f(z) = \frac{d_q f(z)}{d_qz} = \frac{f(z) - f(qz)}{(1-q)z} \Rightarrow d_q f(z) = \frac{f(z) - f(qz)}{(1-q)z} d_qz$$

4) The partial q-derivative of a multivariable real continuous function $f(x_1, x_2, \ldots, x_i, \ldots, x_n)$ to a variable x_i defined by

$$D_{q_i} f(\vec{x}) = \frac{f(\vec{x}) - \varepsilon_{q_i} f(\vec{x})}{(1-q)x_i} \quad (x_i \neq 0, q \in (0, 1))$$

$$[D_{q_i} f(\vec{x})]_{x_i=0} = \lim_{x_i \to 0} D_{q_i} f(\vec{x})$$

where $\varepsilon_{q_i} f(\vec{x}) = f(x_1, x_2, \ldots, x_{i-1}, qx_i, x_{i+1}, \ldots, x_n)$ and we use $D^k_{q_i} x_k$ instead of the operator $\frac{\partial^k}{\partial q^q x^k}$ for some simplification.

Lemma 1.2 (Jack Lemma). Let $\phi(z)$ be regular in the open unit disc \mathbb{D} with $\phi(0) = 0$ and $|\phi(z)| < 1$ for every $z \in \mathbb{D}$. If $|\phi(z)|$ attains its maximum value on the circle $|z| = r$ at a point z_0, then we have

$$z_0 \phi'(z) = m \phi(z_0)$$

where $m \geq 1$ is a real number.

Finally, let Ω be the family of functions $\phi(z)$ regular in the open unit disc \mathbb{D} and satisfying the conditions $\phi(0) = 0, |\phi(z)| < 1$ for every $z \in \mathbb{D}$. Denote by $\mathcal{P}(q)$ the family of functions of the form $p(z) = 1 + p_1 z + p_2 z^2 + \ldots$ which are regular in the open unit disc and satisfying

$$\left| p(z) - \frac{1}{1-q} \right| < \frac{1}{1-q}, \quad z \in \mathbb{D}, \quad q \in (0, 1)$$
Let A be the family of functions f which are regular in the open unit disc D and satisfying the conditions $f(0) = 0$, $f'(0) = 1$, let $f(z)$ be an element of A if $f(z)$ satisfies the condition

$$
\frac{D_q(D_qf(z))}{D_qf(z)} = p(z), \quad z \in D
$$

where $p(z) \in \mathcal{P}(q)$, then $f(z)$ is called q-convex function. The class of such functions is denoted by C_q.

Let $f_1(z)$ and $f_2(z)$ be elements of A. If there exists a function $\phi(z) \in \Omega$ such that $f_1(z) = f_2(\phi(z))$, then we say that $f_1(z)$ is subordinate to $f_2(z)$ and we write $f_1(z) \prec f_2(z)$. Thus $f_1(z) \prec f_2(z)$ if and only if $f_1(0) = f_2(0)$ and $f_1(D) \subseteq f_2(D)$ implies $f_1(D_r) \subseteq f_2(D_r)$, $D_r = \{z \mid |z| < r, \ 0 < r < 1\}$. (Subordination principle [4])

2 MAIN RESULTS

PRELIMINARY

We will need the following lemma and theorems for the aim of this paper.

Lemma 2.1 (q-Jack’s Lemma[2]). Let $\phi(z)$ be analytic in D with $\phi(0) = 0$. Then if $|\phi(z)|$ attains its maximum value on the circle $|z| = r$ at a point $z_0 \in D$, then we have

$$z_0D_q\phi(z_0) = m\phi(z_0)$$

$m \geq 1$ real number.

Proof. Using the q-difference operator and Jack Lemma (1.2), then we have

$$D_q\phi(z) = \frac{\phi(z) - \phi(qz)}{(1-q)z} = \frac{\phi(z) - \phi(z_0)}{z - z_0}, \quad qz = z_0$$

If we take the limit for $z \to z_0$ we obtain

$$\lim_{z \to z_0} D_q\phi(z) = D_q\phi(z_0) = \lim_{z \to z_0} \frac{\phi(z) - \phi(z_0)}{z - z_0} = \phi'(z_0)$$

Therefore we have

$$z_0\phi'(z_0) = m\phi(z_0) = z_0D_q\phi(z_0)$$
Theorem 2.2 ([2]). Let $f(z)$ be a regular function in the open unit disc \mathbb{D}. Then

$$D_q(\log f(z)) = \frac{D_q f(z)}{f(z)}$$

Proof. Using the definition of q-difference operator, then we have

$$D_q(\log f(z)) = \frac{\log f(z) - \log f(qz)}{z - qz} = \log \left(1 + h \frac{D_q f(z)}{f(z)}\right)^{\frac{1}{h}}$$

taking limit for $h \to 0$ we obtain

$$D_q(\log f(z)) = \frac{D_q f(z)}{f(z)}$$

Theorem 2.3 ([2]). Let $f(z)$ be an element of C_q, then

$$\left(\frac{r}{1 + qr}\right)^{\frac{1-q}{\log q^{-1}}} \leq |f(z)| \leq \left(\frac{r}{1 - qr}\right)^{\frac{1-q}{\log q^{-1}}} \quad (2.1)$$

$$(1 + qr)^{-\frac{1-q^2}{q^2 \log q^{-1}}} \leq |D_q f(z)| \leq (1 - qr)^{-\frac{1-q^2}{q^2 \log q^{-1}}} \quad (2.2)$$

Proof. Using theorem (2.5), then since $\frac{z D_q f(z)}{f(z)} < \frac{1}{1-qz}$ and the transformation $w = \frac{1}{1-qz}$ maps $|z| = r$ onto the disc with the center $C(r) = \frac{1}{1-q^2 r^2}$, and the radius $\rho(r) = \frac{qr}{1-q^2 r^2}$. Thus we can write

$$\left|z \frac{D_q f(z)}{f(z)} - \frac{1}{1 - q^2 r^2}\right| \leq \frac{qr}{1 - q^2 r^2} \quad (2.3)$$

The inequality 2.3 can be written in the following form,

$$\frac{1}{1 + qr} \leq \Re ez \frac{D_q f(z)}{f(z)} \leq \frac{1}{1 - qr} \quad (2.4)$$

On the other hand we have (using the q-partial differential rule)

$$\Re ez \frac{D_q f(z)}{f(z)} = r \cdot \frac{\partial_q}{\partial_r} \log |f(z)| \quad (2.5)$$

Considering 2.4 and 2.5 together, we can write

$$\frac{1}{r(1 + qr)} \leq \frac{\partial_q}{\partial_r} \log |f(z)| \leq \frac{1}{r(1 - qr)} \quad (2.6)$$
If we take \(q \)-integral both side of 2.6 we get 2.1.

Since \(\lim_{q \to 1} \frac{1-q}{\log q} = 1 \) then 2.1 reduces to

\[
\frac{r}{1+r} \leq |f(z)| \leq \frac{r}{1-r}
\]

This is the growth theorem of convex functions.

And other side, since the transformation \(\left(\frac{1+z}{1-qz} \right) \) maps \(|z| = r \) onto the disc with the center \(C(r) = \left(\frac{1+q^{2}r^{2}}{1-q^{2}r^{2}}, 0 \right) \) and the radius \(\rho(r) = \frac{(1+q)r}{1-q^{2}r^{2}} \) and since \(f(z) \in C_q \), using the subordination principle, then we can write

\[
\left| \left(1 + qz \frac{D_q(D_qf(z))}{D_qf(z)} \right) - \frac{1+q^{2}r^{2}}{1-q^{2}r^{2}} \right| \leq \frac{(1+q)r}{1-q^{2}r^{2}}
\]
(2.7)

The inequality can be written in the following form,

\[
-\frac{1+q}{q} \cdot \frac{1}{1+qr} \leq \frac{\partial_q}{\partial_r} \log |D_qf(z)| \leq \frac{1+q}{q} \cdot \frac{1}{1-qr}
\]
(2.8)

In this step, if we take \(q \)-integral both sides of 2.8 we get 2.2 \(\square \)

Theorem 2.4 ([7]). \(p(z) \in \mathcal{P}(q) \) if and only if \(p(z) \prec \frac{1+z}{1-qz} \).

Theorem 2.5 ([2]). If \(f(z) \in C_q \), then

\[
z \frac{D_qf(z)}{f(z)} \prec \frac{1}{1-qz}
\]

Proof. We define the function \(\phi(z) \) by

\[
z \frac{D_qf(z)}{f(z)} = \frac{1}{1-q\phi(z)}
\]
(2.9)

Since

\[
f(z) = z + a_2z^2 + a_3z^3 + \ldots \quad \text{and} \quad zD_qf(z) = z + a_2 \frac{1-q^2}{1-q} z^2 + a_3 \frac{1-q^3}{1-q} z^3 + \ldots
\]

then \(\phi(z) \) is well defined and analytic at the same time

\[
\frac{zD_qf(z)}{f(z)} \bigg|_{z=0} = 1 = \frac{1}{1-q\phi(0)} \implies \phi(0) = 0
\]

We need to show that \(|\phi(z)| < 1 \) for all \(z \in \mathbb{D} \). Assume to the contrary, then there exists a \(z_0 \in \mathbb{D} \) such that \(|\phi(z_0)| = 1 \). The definition of the class of \(C_q \), using theorem (2.4) and subordination principle, then we write

\[
A_r = \left\{ f(z) \mid f(z) \in C_q, \left| \left(1 + qz \frac{D_q(D_qf(z))}{D_qf(z)} \right) - \frac{1+q^{2}r^{2}}{1-q^{2}r^{2}} \right| \leq \frac{(1+q)r}{1-q^{2}r^{2}}, q \in (0, 1) \right\}
\]
(2.10)
On the other hand, using the definition \(q \)-derivative, theorem (2.3), relation 2.9 and after the straightforward calculations we get

\[
1 + qz \frac{D_q(D_qf(z))}{D_qf(z)} = q \cdot \left(\frac{1}{1 - q\phi(z)} \right) + \frac{\log q^{-1}}{1 - q} \cdot \frac{zD_q\phi(z)}{1 - q\phi(z)} + \left(1 - q \frac{\log q^{-1}}{1 - q} \right) \tag{2.11}
\]

Using (2.1) in 2.14, then we can write

\[
1 + qz_0 \frac{D_q(D_qf(z_0))}{D_qf(z_0)} = \left[q \cdot \left(\frac{1}{1 - q\phi(z_0)} \right) + \frac{\log q^{-1}}{1 - q} \cdot \frac{m\phi(z_0)}{1 - q\phi(z_0)} + \left(1 - q \frac{\log q^{-1}}{1 - q} \right) \right] \notin A_r
\]

But this is a contradiction with 2.10. Therefore \(|\phi(z)| < 1 \) for all \(z \in \mathbb{D} \). \(\square \)

In the present paper we will investigate the following subclass of \(q \)-harmonic mapping

\[
SHC(q) = \left\{ f = h(z) + \overline{g(z)} \mid w_q(z) = \frac{D_qg(z)}{D_qh(z)} \prec b_1 \frac{1 + z}{1 - qz}, \ h(z) \in C_q, \ q \in (0, 1) \right\},
\]

where

\[
D_qh(z) = \frac{h(z) - h(qz)}{(1 - q)z} = f(z), \quad D_qg(z) = \frac{g(z) - g(qz)}{(1 - q)z} = \tilde{f}_z
\]

SOME REMARKS ON SHC(q)

Since \(f = h(z) + \overline{g(z)} \Rightarrow h(z) = z + a_2 z^2 + a_3 z^3 + \ldots, \ g(z) = b_1 z + b_2 z^2 + b_3 z^3 + \ldots \), then we have

\[
D_qh(z) = 1 + a_2 \frac{1 - q^2}{1 - q} z + a_3 \frac{1 - q^3}{1 - q} z^2 + \ldots, \quad D_qg(z) = b_1 + b_2 \frac{1 - q^2}{1 - q} z + b_3 \frac{1 - q^3}{1 - q} z^2 + \ldots
\]

Thus, for \(q \to 1 \)

\[
D_qh(z) = h'(z), \quad D_qg(z) = g'(z), \quad w_q(z) = w(z) = \frac{g'(z)}{h'(z)}
\]

\[
J_{f_q} = |D_qh(z)|^2 - |D_qg(z)|^2 \to J_f(z) = |h'(z)|^2 - |g'(z)|^2
\]

Theorem 2.6. Let \(f = h(z) + \overline{g(z)} \) be an element of SHC\((q) \), then

\[
\frac{g(z)}{h(z)} \prec b_1 \frac{1 + z}{1 - qz}
\]
Proof. We define the function
\[
g(z) = \frac{h(z) \left(1 + \phi(z) \right)}{b_1 - q\phi(z)}
\]
(2.12)
and therefore \(\phi(z)\) is analytic and \(\frac{g(z)}{h(z)}\big|_{z=0} = b_1 = b_1 \frac{1 + \phi(0)}{1 - q\phi(0)} \Rightarrow \phi(0) = 0\). We need to show that \(|\phi(z)| < 1\) for every \(z \in \mathbb{D}\). On the other hand the linear transformation \(w(z) = b_1 \frac{1 + z}{1 - qz}\) maps \(|z| = r\) onto the circle with the center \(C(r) = \left(\frac{\alpha_1(1 - r^2)}{1 - q^2 r^2}, \frac{\alpha_2(1 - q^2)}{1 - q^2 r^2} \right)\) and the radius \(\rho(r) = \left| \frac{b_1(1 - q)r}{1 - q^2 r^2} \right|\), where \(\alpha_1 = \Re b_1\), \(\alpha_2 = \Re b_2\). Thus, using the subordination principle and the definition of the class \(\text{SHC}(q)\), then we can write
\[
w_q(\mathbb{D}_r) = \left\{ \frac{D_q g(z)}{D_q h(z)} \left| \frac{D_q g(z)}{D_q h(z)} - \frac{b_1(1 + qr^2)}{1 - q^2 r^2} \right| \leq \left| \frac{b_1(1 - q)r}{1 - q^2 r^2} \right|, q \in (0, 1) \right\}
\]
(2.13)
If we take \(q\)-derivative from (2.12) we get
\[
\frac{D_q g(z)}{D_q h(z)} = b_1 \frac{1 + \phi(qz)}{1 - \phi(qz)} + \frac{(1 + q)zD_q \phi(z)}{(1 - q\phi(z))(1 - q\phi(qz))} \cdot \frac{h(z)}{zD_q h(z)}
\]
(2.14)
In this step, if we use theorem 2.5 and subordination principle we get
\[
\frac{D_q g(z)}{D_q h(z)} = b_1 \frac{1 + \phi(qz)}{1 - q\phi(qz)} + \frac{(1 + q)zD_q \phi(z)}{(1 - q\phi(qz))}
\]
(2.15)
Now we assume that there exists \(z_0 \in \mathbb{D}_r\) such that \(|\phi(z_0)| = 1\), using \(q\)-Jack’s lemma we obtain
\[
\frac{D_q g(z_0)}{D_q h(z_0)} = \left(b_1 \frac{1 + \phi(qz_0)}{1 - q\phi(qz_0)} + \frac{(1 + q)m\phi(z_0)}{(1 - q\phi(qz_0))} \right) \notin w_q(\mathbb{D}_r).
\]
This is a contradiction with (2.13), therefore we have \(|\phi(z)| < 1\) for every \(z \in \mathbb{D}\), thus we have \(\frac{g(z)}{h(z)} < b_1 \frac{1 + z}{1 - qz}\).

\[\square\]

Corollary 2.7. Let \(f = h(z) + \overline{g(z)}\) be an element of \(\text{SHC}(q)\), then
\[
|b_1| \left(\frac{1 - r}{1 + qr} \right)^{\frac{1 - q^2}{q^2 \log q} - r} \leq |D_q g(z)| \leq |b_1| \left(\frac{1 + r}{1 - qr} \right)^{\frac{1 - q^2}{q^2 \log q} - r}.
\]
Proof. Since \(\frac{g(z)}{h(z)} < b_1 \frac{1 + z}{1 - qz} \), then using subordination principle

\[
\left| \frac{g(z)}{h(z)} - \frac{b_1 (1 + qr^2)}{1 - q^2 r^2} \right| \leq \frac{|b_1|(1 + q) r}{1 - q^2 r^2} \Rightarrow \left| \frac{b_1}{1 - qr} \right| \leq \frac{|g(z)|}{h(z)} \leq \frac{|b_1|(1 + r)}{1 - qr}.
\]

In this step if we use theorem 2.3 we get

\[
\left| b_1 \left(\frac{1 - r}{1 + qr} \right) \right| \left(\frac{r}{1 + qr} \right)^{\frac{1 + q}{\text{log } q - 2}} \leq |g(z)| \leq \left| b_1 \left(\frac{1 + r}{1 - qr} \right) \right| \left(\frac{r}{1 - qr} \right)^{\frac{1 + q}{\text{log } q - 2}}
\]

Similarly

\[
\left| b_1 \left(\frac{1 - r}{1 + qr} \right) \right| \left(\frac{r}{1 + qr} \right)^{\frac{1 + q}{\text{log } q - 2}} \leq \left| D_q g(z) \right| \leq \left| b_1 \left(\frac{1 + r}{1 - qr} \right) \right| \left(\frac{r}{1 - qr} \right)^{\frac{1 + q}{\text{log } q - 2}}
\]

then we have

\[
\left| b_1 \left(\frac{1 - r}{1 + qr} \right) \right| \left(\frac{r}{1 + qr} \right)^{\frac{1 + q}{\text{log } q - 2}} \leq \left| D_q g(z) \right| \leq \left| b_1 \left(\frac{1 + r}{1 - qr} \right) \right| \left(\frac{r}{1 - qr} \right)^{\frac{1 + q}{\text{log } q - 2}}
\]

\[\Box\]

Corollary 2.8. Let \(f = h(z) + \overline{g(z)} \) be an element of \(\text{SHC}(q) \), then

\[
F_2(q, |b_1|, r) \leq |J_{f_q}(z)| \leq F_1(q, |b_1|, r)
\]

(2.16)

where

\[
F_1(q, |b_1|, r) = (1 - qr)^{-\frac{1 - q^2}{q^2 \text{log } q - 1}} \frac{(1 + |b_1| + (q - |b_1|) r)[(1 + |b_1|) - (q + |b_1|) r]}{(1 + qr)^2}
\]

\[
F_2(q, |b_1|, r) = (1 + qr)^{-\frac{1 - q^2}{q^2 \text{log } q - 1}} \frac{[(1 - |b_1|) - (q + |b_1|) r][(1 + |b_1|) + (|b_1| - q) r]}{(1 - qr)^2}
\]

Proof. Since

\[
J_{f_q}(z) = |D_q h(z)|^2 - |D_q g(z)|^2 = |D_q h(z)|^2 \left(1 - |w_q(z)|^2 \right),
\]

and since

\[
\left| b_1 \left(\frac{1 - r}{1 + qr} \right) \right| \left(\frac{r}{1 + qr} \right) \leq |w_q(z)| \leq \left| b_1 \left(\frac{1 + r}{1 - qr} \right) \right| \left(\frac{r}{1 - qr} \right)
\]

then we have (2.16). \[\Box\]
References

Received: March 16, 2016; Published: June 3, 2016