On the Equicontinuity of Separately Equicontinuous Sets of Mappings

Patricia C. G. Mauro
Centro Interdisciplinar de Ciências da Natureza
Universidade Federal da Integração Latino-Americana
85867-970 Foz do Iguaçu, PR Brasil

Dinamérico P. Pombo Jr.
Instituto de Matemática e Estatística
Universidade Federal Fluminense
24210-201 Niterói, RJ Brasil

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2022 Hikari Ltd.

Abstract

A criterion for the equicontinuity of certain separately equicontinuous sets of mappings, whose validity depends strongly on a version of the Banach-Steinhaus theorem in the context of linearly topologized modules, is obtained.

Mathematics Subject Classification: 13F30, 16W80, 46H25

Keywords: discrete valuation rings, linearly topologized modules, equicontinuity

1 Introduction and preliminaries

Bourbaki [1, p. 28] established a criterion for the equicontinuity of certain separately equicontinuous sets of mappings in whose proof a general version of the Banach-Steinhaus theorem in the framework of locally convex spaces plays a central role. In this note we apply the same argument in order to prove a criterion for the equicontinuity of certain separately equicontinuous sets of
mappings in whose proof a version of the Banach-Steinhaus theorem in the framework of linearly topologized modules is also quite relevant.

In this note ring will mean commutative ring with an identity element $1 \neq 0$ and all modules under consideration will be unitary modules. A principal ring R is said to be a discrete valuation ring [5, Chap. I] if the set M of non-invertible elements of R constitutes a non-trivial ideal of R (thus R is not a field). If π is a generator of M,

$$\{\pi^n R ; n = 1, 2, \ldots\}$$

is a fundamental system of neighborhoods of 0 in R consisting of ideals of R such that $\bigcap_{n \geq 1} \pi^n R = \{0\}$, and hence R is a metrizable linearly topologized ring. In what follows R will denote an arbitrary discrete valuation ring, unless otherwise specified. E is said to be a linearly topologized R-module if it is a topological R-module whose origin admits a fundamental system of neighborhoods consisting of submodules of E [6, §31; 3]. It is clear that a subset B of a linearly topologized R-module E is bounded if and only if for each neighborhood U of 0 in E which is a submodule of E there exists an integer $k \geq 1$ so that $\pi^k B \subset U$.

2 The result

We shall prove the following

Theorem 2.1 Let T be a metrizable topological space, E a barrelled metrizable linearly topologized R-module and G an arbitrary linearly topologized R-module. Let \mathcal{M} be a set of mappings from $E \times T$ into G satisfying the following assumptions:

(a) for each $t \in T$,

$$\{u \in E \mapsto f(u, t) \in G ; f \in \mathcal{M}\}$$

is an equicontinuous set of R-linear mappings from E into G;

(b) for each $x \in E$,

$$\{v \in T \mapsto f(x, v) \in G ; f \in \mathcal{M}\}$$

is an equicontinuous set of mappings from T into G.

Under these conditions, \mathcal{M} is equicontinuous.

Proof: By (4), p. 172 of [2], it suffices to prove that, for each $(x, t) \in E \times T$ and for each sequence $((x_n, t_n))_{n \geq 1}$ in $E \times T$ converging to (x, t) in the metrizable topological space $E \times T$, $(f(x_n, t_n))_{n \geq 1}$ converges uniformly to $f(x, t)$ for
$f \in \mathcal{M}$. Indeed, let W be a neighborhood of 0 in G which is a submodule of G and let us show that the set

$$\{u \in E \mapsto f(u, t_n) - f(u, t) \in G \ ; \ n \geq 1, \ f \in \mathcal{M}\}$$

of continuous R-linear mappings from E into G is equicontinuous. But, since E is barrelled, it is enough to show that the just-mentioned set is simply bounded in view of Theorem 3.4 of [4]. For this purpose, let $u \in E$ be fixed. By (b) and the fact that $(t_n)_{n \geq 1}$ converges to t in T, there exists an integer $m > 1$ so that $f(u, t_n) - f(u, t) \in W$ for all $n > m$ and for all $f \in \mathcal{M}$. On the other hand, the equicontinuity of the set

$$\{z \in E \mapsto f(z, t_n) - f(z, t) \in G \ ; \ n = 1, \ldots, m, \ f \in \mathcal{M}\}$$

of R-linear mappings from E into G, furnished by (a), implies its pointwise boundedness. Consequently, there is an integer $l \geq 1$ so that

$$\pi^l \{f(u, t_n) - f(u, t) ; \ n = 1, \ldots, m, \ f \in \mathcal{M}\} \subset W.$$

But, as W is a submodule of G, what we have seen yields

$$\pi^l \{f(u, t_n) - f(u, t) ; \ n > m, \ f \in \mathcal{M}\} \subset \pi^l W \subset W.$$

Therefore

$$\pi^l \{f(u, t_n) - f(u, t) ; \ n \geq 1, \ f \in \mathcal{M}\} \subset W.$$

By the arbitrariness of u and what we have observed, the equicontinuity of the set

$$\{u \in E \mapsto f(u, t_n) - f(u, t) \in G \ ; \ n \geq 1, \ f \in \mathcal{M}\}$$

is guaranteed. Moreover, by (a), the set

$$\{u \in E \mapsto f(u, t) \in G ; \ f \in \mathcal{M}\}$$

of R-linear mappings from E into G is equicontinuous. Hence the set

$$\{u \in E \mapsto f(u, t_n) \in G ; \ n \geq 1, \ f \in \mathcal{M}\}$$

of R-linear mappings from E into G is equicontinuous and, since the sequence $(x_n - x)_{n \geq 1}$ converges to 0 in E, there is an integer $r \geq 1$ so that $f(x_n, t_n) - f(x, t_n) \in W$ for all $n \geq r$ and for all $f \in \mathcal{M}$. Moreover, by (b), there is an integer $s \geq 1$ so that $f(x, t_n) - f(x, t) \in W$ for all $n \geq s$ and for all $f \in \mathcal{M}$. Thus

$$f(x_n, t_n) - f(x, t) = [f(x_n, t_n) - f(x, t_n)] + [f(x, t_n) - f(x, t)] \in W + W \subset W$$

for all $n \geq \max \{r, s\}$ and for all $f \in \mathcal{M}$, thereby concluding the proof.
An immediate consequence of Theorem 2.1, which is precisely Proposition 3.8 of [4], reads:

Corollary 2.2 Let E, F be metrizable linearly topologized R-modules, with E barrelled, and let G be an arbitrary linearly topologized R-module. Then every separately equicontinuous set of R-bilinear mappings from $E \times F$ into G is equicontinuous.

The example below shows that the barrelledness of E is essential for the validity of Corollary 2.2.

Example 2.3 Let us consider the submodule $E = R^{(\mathbb{N})}$ of the R-module $R^{\mathbb{N}}$, endowed with the topology induced by the product topology on $R^{\mathbb{N}}$, under which E is a metrizable linearly topologized R-module. Since πE is a barrel in E which is not a neighborhood of 0 in E, E is not barrelled. Moreover, the separately continuous R-bilinear mapping

$$A : ((\lambda_n)_{n \geq 1}, (\mu_n)_{n \geq 1}) \in E \times E \mapsto \sum_{n \geq 1} \lambda_n \mu_n \in R$$

is discontinuous. In fact, if k, m_1, \ldots, m_k are arbitrary integers ≥ 1,

$$\alpha = (0, \ldots, 0, 1, 0, \ldots, 0, \ldots) \in ((\pi^{m_1} R) \times \ldots \times (\pi^{m_k} R) \times R \times \ldots \times R \times \ldots) \cap E$$

and $A(\alpha, \alpha) = 1 \notin \pi R$.

Finally, an immediate consequence of Proposition 2.5 of [4] and Theorem 2.1 reads:

Corollary 2.4 Let E be a complete metrizable linearly topologized R-module such that $\pi^n U$ is a neighborhood of 0 in E for every integer $n \geq 1$ and for every neighborhood U of 0 in E. If T, G and \mathcal{M} are as in the statement of Theorem 2.1, then \mathcal{M} is equicontinuous.

One may also mention that the condition “$\pi^n U$ is a neighborhood of 0 in E for every integer $n \geq 1$ and for every neighborhood U of 0 in E” is essential for the validity of Corollary 2.4, as the example below shows.

Example 2.5 Assume that R is complete, let E be the R-module $R^\mathbb{N}$ endowed with the product topology, under which E is a complete metrizable linearly topologized R-module (note that $U = \pi R \times R \times R \times \ldots \times R \times \ldots$ is a neighborhood of 0 in E, but πU is not), and let F be the submodule $R^{(\mathbb{N})}$ of $R^\mathbb{N}$ endowed with the linear R-module topology induced by that of E.
Then, by arguing as in Example 2.3, one sees that the separately continuous R-bilinear mapping
\[
((\lambda_n)_{n \geq 1}, (\mu_n)_{n \geq 1}) \in E \times F \mapsto \sum_{n \geq 1} \lambda_n \mu_n \in R
\]
is discontinuous.

\section*{References}

\textbf{Received: April 29, 2022; Published: May 20, 2022}