Prediction of Public Transportation Occupation

Based on Several Crowd Spots

Using Ordinary Kriging Method

Sri Suryani Prasetiyowati

Computational Science, School of Computing
Telkom University, Bandung
Indonesia

Mahmud. Imrona, Izzatul Ummah and Yuliant Sibaroni

Computational Science, School of Computing
Telkom University, Bandung
Indonesia

Copyright © 2015 Sri Suryani Prasetiyowati et al. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is known that traffic congestion problems had occurred more frequently and had become much worse nowadays, not only in big cities but also in smaller cities. Therefore, we are required to find a tool to help us developing an analytical model that can be used to govern a public policy regarding traffic management. In the process of building the system there are several issues that have to be addressed. One of those issues is mostly related with how to determine the public transportation routes, how to determine the type of public transportation, and how to determine the optimal amount of public transportation needed for each route. In this research, we limit our study of public transportation system only in Bandung City area. The problem of determining the route of public transportation system can be solved in several ways, for example, by determining the required amount of public transportation based on the estimation of its occupancy in each route. In this research, we use ordinary kriging method based on spatial analysis, to predict occupancy of the public transportation. We conducted daily observations on weekdays and weekend, to collect the traffic data. The result of our research is a
prediction of occupancy of public transportation for each crowd spots area. On the weekdays Gaussian theoretical semivariogram is chosen, whereas on the weekend is spherical. Based on the distribution pattern of the occupancy of public transportation as represented in contour-display figure, we conclude that the average occupancy of public transportation in Bandung City is not optimal. Amount of public transportation mode in Bandung exceed standard of transportation public requirement.

Keywords: public transportation, occupancy, semivariogram, kriging, spatial

1 Introduction

A decent, adequate public transportation can be measured at least by its capacity to cope with the urban area and by its proportion to the number of passengers. If the public transportation cannot reach certain locations in the city, then more citizens will use their private vehicle to reach those locations. The optimum number of public transportation must also be calculated and determined carefully for each route. If the number is too low, the cost to maintain the public transportation will also be lowered, but it will not be able to serve many passengers due to its limited capacity, in other words, the ratio of mode will be very high. On the other hand, if the number of public transportation is too high, then the ratio of mode will be very low, which will increase the maintenance cost of public transportation and in turn, it will cause a significant loss for the business companies who provide the public transportation service.

It is not easy to build a decent public transportation in order to solve the traffic congestion problem. One way is to develop an effective routing system for public transportation. There are several issues that must be taken into our consideration: how to determine terminal points of public transportation, how to determine the type and capacity of public transportation, and how to estimate the distribution of passengers in all routes.

In this research, we propose a public transportation routing system based on the following inputs: terminal nodes of public transportation, road capacity, geographic data of distribution of city population, and geographic data of crowd spots area (supermarket, schools, offices, hospital, mall buildings, etc.). The output of this system is a number of suggested routes and the optimum number of public transportation for each route. The best route and the optimum number of public transportation are measured by the level of its scope (reach capacity) over the whole city area, the total of cost which is calculated from the minimum eligibility standards for the ratio of mode, and the average cost for a passenger to travel from one location to other location.

Our main contribution is to suggest a method to manage public transportation system more efficiently, with which we can reduce not only the traffic congestion itself, but we can also diminish other problems such as air pollution, cost transportation, and the public-policy making in transportation.
2 Literature Review

There are several studies on the prediction system for transportation in Indonesia, mostly conducted by researchers from civil engineering area. In a research on the prediction of the number of passengers in flight routes, [8] used linear regression analysis to analyze several factors in their consideration. [10] used trend analysis model to predict the growth pattern of the passengers and baggage. Trend analysis can be done using one of these methods: linear regression, exponential regression, and polynomial regression. Other researchers also generally include a regression model in their works.

Based on those previous studies, the prediction of the number of passengers and their mobility using public transportation system is still conducted using regression model without considering the characteristic of spatial data. On the other hand, the number of passengers in some locations depend on the characteristic of its location, including the location of settlement, office buildings area, industrial area, schools and colleges area, etc., which will have a significant impact on the distribution of number of passengers and their mobility. The points or nodes in which we observe the mobility of passengers in public transportation must be considered as data spatial. Furthermore, the distribution of number of passengers and their mobility can be predicted using kriging method with the use of semivariogram models that are common in geostatistical analysis.

In other countries, the use of spatial model to solve such problems in transportation had been done quite intensively. However, the information from spatial data has not yet been utilized to make a prediction on the number of passengers. Chatterjee and Venigalla used spatial data of trips to design urban transportation planning. [3, 7] conducted a research to examine the influence or impact of a spatial information on people’s decision regarding transportation planning and modeling. In their research on spatial modeling in transportation, [1] proposed Full Spatial Model in a competition between railway transportation (train) versus water transportation (ship). This model considered following factors: the location of the passenger of the ships, the geography of the transportation network, and the type of options available for travelers.

3. Methodology

Research methodology can be seen as the techniques used to collected and analyze data. In this research, we used the data of occupancy of passengers in public transportation in each route, which we observed at several crowd spots area on the weekdays and weekend. We limited our observation to 10 routes of public transportation in Bandung. The data is analyzed and processed using spatial analysis software: ArcMap and Google Earth Pro (to obtain Bandung city map). Below is the process of estimating the weighted route:
3.1 Preparation of Maps Layer

The layer setting must be performed so that the map resulted from estimation process is well-conformed with the original city map. The steps are as follow:
- Data setting (in meters) and data adjustment in Bandung city map.
- Opening file of Bandung city map (with extension shp)
- Opening data occupancy of public transportation which has been adjusted with its coordinate latitude and longitude in Bandung city map

3.2 Spatial Analysis Estimation Weighted Route and Occupancy

Crowd area spots are spatial data that can be defined as data containing information about location [5]. This spatial data will be the input for the prediction public transportation occupancy in Bandung City. Given s_i, for $i = 1, \ldots, n$, a location with coordinate (x_i, y_i). Thus, $Z(s_i)$ measures the level of occupancy Z in a location s_i. Spatial data is considered to be a dependent data model, because the spatial data is retrieved from different spatial locations which indicate a dependency of Z on its location.

Semivariogram Experimental

Semivariogram experimental can be defined as a half fraction of the average value of the sum square of the variance between two or more points with distance vector of h unit [11]. The value of semivariogram experimental can be derived using formula:
Prediction of public transportation occupation...

\[\gamma'(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(s_i + h) - Z(s_i)]^2 \] \hspace{1cm} (1)

Where \(\gamma'(h) \) is semivariogram experimental, \(h \) is distance between two points, \(s \) is location of the sample, \(Z(s_i) \) is a measured value of data in location \(s_i \). \(N(h) \) is a number of pairs \((s_i, s_i + h)\) which has distance of \(h \). The plotting of semivariogram \(\gamma'(h) \) over distance \(h \) gives a semivariogram experimental plotting. The chart of semivariogram experimental can be used as a basis to find theoretical semivariogram model which will be needed in estimating phase.

Theoretical Semivariogram Model

To make a prediction or estimation, a theoretical semivariogram model is required. The pattern of the graphical plot of semivariogram experimental retrieved from data is usually non-uniform (non-regular), making it hard to be interpreted and cannot be used directly in the forecasting process. Thus we need to analyse the semivariogram experimental chart and develop a theoretical semivariogram model from it.

Here we describe several models which will be used in the fitting model of the theoretical semivariogram [2]:

a. Spherical Model

The general form of spherical model is:

\[\gamma(h) = \begin{cases} \frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a} \right)^3, & \text{for } h \leq a \\ c, & \text{for } h > a \end{cases} \] \hspace{1cm} (2)

b. Exponential Model

The general form of exponential model is:

\[\gamma(h) = c \left[1 - \exp\left(-\frac{h}{a} \right) \right] \] \hspace{1cm} (3)

c. Gaussian Model

The general form of Gaussian model is:

\[\gamma(h) = c \left[1 - \exp\left(-\frac{h^2}{a^2} \right) \right] \] \hspace{1cm} (4)

where \(a \) is range, \(\gamma(h) \) is theoretical semivariogram, \(c \) is sill, \(h \) is distance between two points.

3.3 Ordinary Kriging Method

We will estimate \(s_0 \) using a number of \(n \) sample of the value of the neighboring \(s_a \) and linearly combine it with a weight \(= \omega_a \) [2].
\[\hat{Z}(s_o) = \sum_{\alpha=1}^{n} \omega_{\alpha}^{OK} Z(s_{\alpha}) \quad (5) \]

Where \(\hat{Z}(s_o) \) is estimated value in \(s_o \), \(\omega_{\alpha}^{OK} \) is weighted value of data (from the Ordinary Kriging system), \(Z(s_{\alpha}) \) is the value contained in minerals at the sample point, \(n \) is the number of sample used in the estimation process.

The variance of this estimation is:

\[\sigma_{\text{OK}}^2 = \mu_{\text{OK}} + \sum_{\alpha=1}^{n} \omega_{\alpha}^{OK} \gamma_{\alpha 0} \quad (6) \]

where \(\sigma_{\text{OK}}^2 \) is variance of estimation, \(\mu_{\text{OK}} \) is lagrange parameter (from Ordinary Kriging system), \(\gamma_{\alpha 0} \) is theoretical semivariogram of the estimated point of sample \(\alpha \) (from Ordinary Kriging system).

Ordinary Kriging is an exact interpolator in which if we have \(s_0 = s_\alpha \) to be identical with the data location, then the estimation value will be also identical with the data value on that point.

\[\hat{Z}(s_0) = Z(s_\alpha) \quad (7) \]

if \(s_0 = s_\alpha \)

3.5 Validation Model

The prediction result is validated and verified using Root Mean Square Error (RMSE) analysis [9]. To validate the theoretical semivariogram model, we obtain the value of RMSE by calculating the mean square-root of the difference between theoretical semivariogram value and experimental semivariogram value. To validate the prediction of weight and occupancy, we used the variance of kriging method.

3.6 Interpolation of the Contour Map

The prediction result of occupancy of public transportation in crowd spots area (whether it is observed or not), is interpolated to a contour map with weights obtained from prediction result. We use different setting color for different interval of occupancy level, from low to high.

3.7 Mapping the Weight Prediction on Map

The contour map produced by ordinary kriging method can be displayed in the layer, by making some necessary settings of its location, display, and extent, so that the contour map will be well-matched with the city map (shp). After the contour map is matched with the city map, the next step is to open the file of Bandung city map which already has streets’ name and marks of crowd spots produced using Google Earth Pro.
4. Results and Discussion

The data of this research is data of public transportation occupancy in Bandung City. The data sample is retrieved from several crowd spots area. The observation is carried out on weekdays and weekend, in 10 routes and means are 10 crowd spots area of each route.

4.1 Preparation of Maps Layer

The layer setting must be performed so that the map resulted from estimation process is well-conformed with the original city map.

![Map of crowd spots area in Bandung City](image)

Figure 2: Map of crowd spots area in Bandung City

4.2 Spatial Analysis Estimation Weighted Route and Occupancy

4.2.1 Semivariogram Experimental

In this research, the weighted route of public transportation is characterized by the occupancy level of passenger in public transportation. Before we calculate the weight, we need a certain value of variance to determine the distance in which the observed values are independent, or in other words, have no correlation with each other. The calculation in the semivariogram model is based on certain distance and direction from the observation point, therefore the behavior of the semivariogram is unisotrophy. We separate the data retrieved from weekdays observation and the data from weekend observation, and therefore we will analysis them separately.

The figure 3 and 4 shows a graphical plot of experimental semivariogram and semivariogram map from the data of weekdays and data of weekend.
From the figure 3 and 4, we see that the data on weekdays and weekend is unisotrophy, and its behavior tend towards North east – South west.

4.2.2 Theoretical Semivariogram Model

The table below shows the result of our cross-validation of the selected theoretical semivariogram model, which will be used in the prediction of weighted route and occupancy of passenger in public transportation using ordinary kriging method.
Table 1: Parameters of theoretical semivariogram models

<table>
<thead>
<tr>
<th></th>
<th>Nugget</th>
<th>Major Range</th>
<th>Minor Range</th>
<th>Partial Sill</th>
<th>Nlag</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular</td>
<td>0.830</td>
<td>7126.84</td>
<td>3812.82</td>
<td>1.348</td>
<td>12</td>
<td>1.179</td>
</tr>
<tr>
<td>Spherical</td>
<td>0.798</td>
<td>7126.84</td>
<td>4000.76</td>
<td>1.328</td>
<td>12</td>
<td>1.175</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.719</td>
<td>7126.84</td>
<td>3767.23</td>
<td>1.319</td>
<td>12</td>
<td>1.189</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.983</td>
<td>7126.84</td>
<td>3526.06</td>
<td>1.209</td>
<td>12</td>
<td>1.176</td>
</tr>
<tr>
<td>Weekdays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular</td>
<td>0.881</td>
<td>3577.03</td>
<td>1487.26</td>
<td>0.750</td>
<td>12</td>
<td>1.023</td>
</tr>
<tr>
<td>Spherical</td>
<td>0.846</td>
<td>3577.03</td>
<td>1558.33</td>
<td>0.774</td>
<td>12</td>
<td>1.023</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.703</td>
<td>3577.03</td>
<td>1487.26</td>
<td>0.921</td>
<td>12</td>
<td>1.028</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.939</td>
<td>3577.03</td>
<td>1199.86</td>
<td>0.687</td>
<td>12</td>
<td>1.020</td>
</tr>
</tbody>
</table>

The best theoretical semivariogram for weekdays observation is Gaussian model with value of RMSE is 1.02, while the best theoretical semivariogram for weekend is Spherical model, with value of RMSE is 1.175, as shown in the table 1.

4.2.3 Occupancy Prediction Result Using Ordinary Kriging Method

The best semivariogram model from both data (weekdays and weekend) will be used as an input for the prediction process using Ordinary Kriging method. We use Ordinary Kriging method because the data of public transportation occupancy is stationary, and the mean value can be obtained. Due to the data being anisotropy, when we input the range value in Kriging process, we must consider the location of crowd spots area which will become a supporting data to calculate the prediction process for other points. Those supporting data is chosen with the use of ellipse of the semivariogram in the figure above, in which we put the point in the prediction process to be its central point. Table 2 shows our occupancy prediction result in weekday and weekend in some locations.

Table 2: Occupation Prediction in weekdays and Weekend

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>OCCUPANCY WEEKDAYS</th>
<th></th>
<th>X</th>
<th>Y</th>
<th>OCCUPANCY WEEKEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>788225.1</td>
<td>9236447</td>
<td>4.20</td>
<td>788225.1</td>
<td>9236447</td>
<td>4.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>791096.0</td>
<td>9236212</td>
<td>2.84</td>
<td>793142.5</td>
<td>9235388</td>
<td>3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>785340.1</td>
<td>9235814</td>
<td>4.68</td>
<td>784558.4</td>
<td>9235047</td>
<td>5.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>790456.4</td>
<td>9235554</td>
<td>3.20</td>
<td>782540.3</td>
<td>9236681</td>
<td>2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>784629.5</td>
<td>9235047</td>
<td>5.25</td>
<td>784501.6</td>
<td>9237576</td>
<td>4.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>793156.7</td>
<td>9235402</td>
<td>3.18</td>
<td>790470.6</td>
<td>923597</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>787813</td>
<td>9235757</td>
<td>5.04</td>
<td>789248.4</td>
<td>9237179</td>
<td>3.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>784217.3</td>
<td>9234805</td>
<td>5.31</td>
<td>792360.8</td>
<td>9236667</td>
<td>2.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>787898.2</td>
<td>9233938</td>
<td>2.28</td>
<td>790271.7</td>
<td>9234876</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Distribution Pattern of Occupancy in Bandung City

Distribution pattern of the prediction of weighted route is displayed in three colored maps below, which depict the interval of weight within the crowd spots area. Color gradation begin with dark blue for lowest value of occupancy, followed by light blue, yellow, orange, brown, and dark red for highest value of occupancy. Our prediction result of weighted route on weekdays and weekend are shown in the figures 5 and 6.

Figure 5: Mapping distribution pattern of public transportation occupation in Bandung city at weekdays

Figure 6: Mapping distribution pattern of public transportation occupation in Bandung city at weekend

In the figure of contour map on weekdays, the eastern and southern areas of Bandung City are mostly colored in dark blue to light brown, thus we can conclude its average occupancy is less than 3.29. On the other hand, the western, middle, and northern areas of Bandung are mostly colored in dark brown to dark red, thus we conclude its average occupancy of public transportation is more than 3.8. On the weekend, the eastern, northern, and western areas of Bandung are mostly
colored in dark blue to yellow which means the average occupancy is less than 3; whereas in the middle and southern areas are mostly colored in light red to dark red which means the average occupancy is more than 4. So, of the results of the above analysis it can be said that the occupancy of public transportation for all routes in the city of Bandung is not maximized. This is supported by a small weight value of each route, caused by the weight of each the crowd spots area require the support of many neighbors that are likely located far apart. So that the support from locations around the crowd spots area is not too could support the increase in occupancy value of each route.

5. Conclusion

The prediction of weighted route can be depicted by the prediction of occupancy of public transportation per each crowd spots area. Our result of the spatial analysis prediction of weighted route of public transportation in Bandung City for the weekdays is a chosen Gaussian theoretical semivariogram, and for the weekend is a chosen spherical theoretical semivariogram; both are using Ordinary Kriging method. Based on distribution pattern of occupancy of public transportation displayed in the contour maps, it can be concluded that the mid-part of Bandung City has the highest average occupancy of public transportation, which is more than 4; whereas the average occupancy of public transportation in the northern, southern, western, and eastern part of Bandung is less than 3. So, of the results of the above analysis it can be said that the occupancy of public transportation for all routes in the city of Bandung is not optimal. There are too many transportation mode in Bandung exceed standard requirement of society in transportation. Many motorcycles and private cars is strongly suspected to be the cause of declining interest of people in using public transportation.

Acknowledgements. The authors would like to thank to Research Division of Telkom University and DIKTI for supporting this research.

References

Received: November 15, 2015; Published: August 10, 2016