
Journal of Innovative Technology and Education, Vol. 2, 2015, no. 1, 29 -35

HIKARI Ltd, www.m-hikari.com

http://dx.doi.org/10.12988/jite.2015.543

A Unique Technique to Handle the Complexity and

Improve the Effectiveness of Test Cases in

Software Testing

 S. Baladwarakanath

Department of IT, Faculty of Computing

Sathyabama University, Chennai 600119, India

K. Vijay

Department of IT, Faculty of Computing

Sathyabama University, Chennai 600119, India

 Copyright © 2015 S. Baladwarakanath and K. Vijay. This article is distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

Abstract

Software Testing is a critical part of the whole process of development, on which

the quality of the products delivered strictly depends. The testing is performed to

verify the software using various types of information that are available in the

project. When the internal state is present, a group of various function calls is

mandatory for testing the software. At times, to test a particular section of the

program, a group of function calls which are already used is needed to obtain the

internal state of the code in exact configuration. This unique method of internal

states is used in OOPS and also in software's that are procedural. Here we are

analyzing the impact of the length of test cases plays in testing particular software

in a single branch of code that is covered during the process of testing. We use

this in difficult circumstances of software testing, randomly shortlisted test case

set along with the test cases and source code make their testing trivial. Hence, we

proposed new technique is complexity module that makes accuracy in testing the

Source code and modules of the test cases. This technique will keep the internal

state in proper configuration to cover the branch code by function call.

Keywords: Complexity Module, Random Test, Software Testing

30 S. Baladwarakanath and K. Vijay

1. Introduction

 Software testing is the method used to verifying the error, bug, issue or

differences in software for a particular input and its output which appraises the

characteristics of software product. The process of executing white box testing on

particular software has certain rules for finding a set of compatible test cases that

fulfils the rules. Usually test cases play a role of driver which makes the call for

function under test by particular input principles. Then compare the attained

output with the expected output. By all the input is impractical because the

numbers are unlimited. Hence by automating the process of software testing for

automatically finds the set of inputs that is smaller than other possible input sets

so the usage of testing criteria is maximum [2]. There may arise many problems in

internal state. Internal states may be the example of static variables used in C

language. In software using object oriented programming; most of the code

involves internal states. Internal state creating more problem cause the source

code coverage could be depending on the internal state status. The function call

sequence is needed to keep the internal state in proper state [2]. Nowadays, we

can generate a test set with large amount of code coverage. The major issue in this

procedure to produced input may be complex structure. We are focusing on the

producing of the enhanced test suite for input invention [1]. The test cases for a

procedure of testing a particular built may consist of one or a sequence of input

values [6].

 We analysis the length of test sequences which has an impact on final result

of the testing process. So that, we use a unique technique to analyses and arrive on

a optimal result on a time which is much lesser when compared to many other

techniques that are given in literature. This property can also be used in many

other techniques. Thus in this searching techniques, we perform an analysis to

find the usage of searching to find the optimal sequence

2. Related Work

The test sequences may be complicated to test the functionality of the object

oriented software, in which the object is the instance of the class. There are many

constructors and super-classes available for software. Each function that is

involved in the process of testing may take the respective objects as their input.

The objects should be instantiated, and possess unique sequences for calling

function to rearrange their internal states in the perfect configuration [2].

Author presents the problem of generating the sequences of test inputs

has been considered as the generation of test set for the container classes that

are used, in random testing process, abstraction based “model checking”

technique and the process which follows symbolic execution are the most

applicable methods that can be used successfully[4].

 Results of the studies on advanced techniques for test selection methods with

random testing, but all the above mentioned studies failed to provide the answer

for either of them. All the recent techniques employs random test set generation

A unique technique to handle the complexity and… 31

for object-oriented software to perform unit tests but failed to explain larger code

bases and can only generate complex inputs, while testing containers exploits

smaller code bases in depth and requires only simple data inputs [5]. In a

sequence of generations the individuals that survive are the fittest in that

generation. The fitness value is calculated by executing the test case [3].

 Here focuses on software-in-the-loop, in this category, the software that are

embedded are tested in a particular simulated environment which is set up for

development. The only difference is that we employ an adapter which fits hardware

platform that sends all the signals from the SUT to the environment.

3. Proposed Work

3.1 Overview
 Software testing is a process by which a software application or program is

verified and validated that. Software testing is used to find important bugs in the

application that should be solved before delivery. The defects, bugs etc must be

categorized by severity .In our proposed work, we are proposing a unique

technique called complexity module that makes accuracy in testing the Source

code and modules of the test cases. The testing is performed in the system with

configuration windows 7, 8 GB RAM, Intel i5 processor (64 bit).

3.2 Overall Architecture

Fig.1. Architecture of the Software Testing

Problem
Description

Algorithm

Technique

Sequences

Complexity module
for test cases and
source code

Random Test

Implementation of
Project

 Test

Test Case

Test Log

32 S. Baladwarakanath and K. Vijay

3.3 Test Case Generation

 Test cases are the input given to the software that is to be tested. For example,

a test case for testing a bill desk may contain a sequence of numeric values. There

are various techniques available to develop a test cases, these creation of test cases

depend upon the type of testing that is to be performed. The test case generation

technique for user interface derived developed in this dissertation uses a model

that is specific. The remainder of this section generates some test cases for user

interface with their own limitations and shortcomings which are describes in some

black-box testing techniques that are applicable for user interface testing.

3.4 Test Plan

 Test plan is nothing but a requirement document. This is mandatory for

testing. For straight-forward projects, the plan need not be detailed. The

components that should be addressed in a test plan are as follows.

 Test process objective,

 Scope of the project,

 Testing process during the development,

 Environment set up for testing,

 Analyzing and identifying the risk factor,

 Bug Report, and so on.

3.5 Random Test and Complexity Module
 Random testing is the basic technique for which will select the test cases

randomly from the set of possible inputs to the program Complexity module is

technique that makes accuracy in testing the code and modules. This technique

will keep the internal state in proper configuration to cover the branch.

3.6 Algorithm

Algorithm: Complexity Module (f,c,r)

Input f: maximum fitness evaluations,

c: Number of consecutive test cases without improved fitness,

r: random test-cases that is generate for the purpose of comparison in Module.

Declare E: set of test cases that is executed = {},

R: set of test cases that are randomly generated = {}, p: performed fitness

evaluations = 0, i: consecutive sequence of test cases without improved fitness = 0,

Rc: Randomly selected test case, Cf: test case whose form is changed, Tr: test case

that is segregated from R, Ts: test case segregated from R which is selected based on

Complexity module, Dm: shortest distance covered by test case Tr with all possible

cases to test E, v: maximum value of Df obtained over R

1. Begin

2. Set of randomly Generated test case Rc

3. Execute the randomly generated Rc and evaluate whether the environment error

 state is reached, Add Rc to E

4. While error in test Setup, then AND p <= m AND i <= c

A unique technique to handle the complexity and… 33

5. Mutate Rc to get Cm, Execute Cm and check if the error state occurred in test

environment

6. Add the value of Cm with E, Increase the value of f

7. if fitness value(Cf) >= fitness value(Rc) then Rc = Cf, i = 1, else Increment i

8. while test place error state not reached ANDp <= m

9. Sample r randomly selected test cases and add them to R,v= 0

10.for each Tr ∈ R , Calculate Dm

11. if Df > v then v = Df, Ts = Tr

12. Execute Ts and check if the error state is reached in test place

13. Add the value of Ts with the value of E, Increase the value of p

14. end

4. Experimental Result and Discussion

 We have developed a unique technique for the software testing that make an

effective approach in detecting the bugs in the software development. This

technique will produce more accuracy in testing of the code.

4.1 Success rate for 8 Configuration of Complexity module on 8 Problems

Table.1. Success rate for 8 Configuration of Complexity module

In Table 1, we are showing the test result that representing our proposed technique

Complexity module accuracy.

4.2 Success Rate of Complexity module and other Techniques

Table.2. Success rate of complexity module and other techniques

Con→

Prob↓
10 20 30 40 50 60 70 80

Pt1 0.8 0.98 1 0.41 0.91 0.64 0.85 1

Pt2 0.7 1 0.96 1 0.96 1 0.83 1

Pt3 1 1 0.84 0.84 0.88 1 0.79 0.92

Pt4 0.9 0.94 0.48 0.58 0.85 1 0.76 0.76

Pt5 0.6 0.45 0.56 0.72 0.78 0.96 0.99 0.59

Avg. 0.75 0.82 0.83 0.75 0.91 0.84 0.837 0.84

Method Pt 1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Avg.

GA 1 0.90 1 0.72 0.92 1 0.85 0.88

EA 0.86 1 0.90 0.45 0.88 0.79 0.74 0.825

RSA 0.90 0.39 1 0.76 0.69 0.63 1 0.786

HC 1 0.54 0.86 0.71 1 0.97 0.82 0.832

CM 0.95 1 1 0.90 0.78 0.80 1 0.927

34 S. Baladwarakanath and K. Vijay

In Table 2, we are doing comparison between the Complexity module and other

existing techniques (Pt is the problem in particular time).

4.3 Comparison of Complexity Module with other Techniques

Fig.2. Complexity Module vs Different Techniques

In Fig 2, the graph is showing the direct comparison with Genetic Algorithm,

Random Search Algorithm, Hill Climbing and Evolutionary Algorithm.

4.4 Code Coverage

Fig.4. Code Coverage by Several Techniques

 In Fig 4, the graph is showing the code coverage capability by the different

techniques. Code coverage process is keeping the internal state in proper

configuration that is making a most reliable testing.

5. Conclusion

We have implemented a unique technique to handle complexity modules that

A unique technique to handle the complexity and… 35

make accuracy more in testing the source code and its modules of the test cases.

After overcoming the problem of software testing, this unique technique will

produce more effectiveness result in test cases. The capacity of detecting error is

more in compare to several existed technique like GA (Genetic Algorithm), HC

(Hill Climbing), RSA (Random Search Algorithm), and EA (Evolutionary

Algorithm). This technique will keep the internal state in proper configuration to

cover the branch code by function call. Here, we are going for the random test

which provides the more accuracy in detecting the error.

References

[1] A. Arcuri, It Does Matter How You Normalize the Branch Distance in

Search Based Software Testing, Proc. IEEE Third International

Conference on Software Testing, Verification and Validation (2010), 205 -

214. http://dx.doi.org/10.1109/icst.2010.17

[2] A. Arcuri, Longer Is Better: On the Role of Test Sequence Length in

Software Testing, Proc. IEEE Third International Conference on

Software Testing, Verification and Validation (2010), 469 - 478.

http://dx.doi.org/10.1109/icst.2010.16

[3] A. Arcuri, A Theoretical and Empirical Analysis of the Role of Test

Sequence Length in Software Testing for Structural Coverage, IEEE

transactions on software engineering, 38 (2012), 497 - 519.

 http://dx.doi.org/10.1109/tse.2011.44

[4] Alex Groce, Coverage Rewarded: Test Input Generation via

 Adaptation-Based Programming, 26th IEEE/ACM International Conference

 on Automated Software Engineering (2011), 380 - 383.

 http://dx.doi.org/10.1109/ase.2011.6100077

[5] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, M. D. Ernst, An

 empirical comparison of automated generation and classification

 techniques for object-oriented unit testing, International Conference

 on Automated Software Engineering (ASE) (2006), 59 - 68.

 http://dx.doi.org/10.1109/ase.2006.13

[6] Sapna Varshney, Monica Mehrotra, Automated Software Test Data

 Generation for Data Flow Dependencies using Genetic Algorithm,

 International Journal of Advanced Research in Computer Science and

 Software Engineering, 4 (2014), 209 - 218.

Received: April 16, 2015; Published: July 17, 2015

http://dx.doi.org/10.1109/icst.2010.17
http://dx.doi.org/10.1109/icst.2010.16
http://dx.doi.org/10.1109/tse.2011.44
http://dx.doi.org/10.1109/ase.2011.6100077
http://dx.doi.org/10.1109/ase.2006.13

