Inertial Extragradient-Viscosity Algorithms for Nonmonotone and Non-Lipschitzian Equilibrium Problems in Hilbert Spaces

Liang Yan ¹, Zhaoli Ma ¹,²,* and Xin Chang ¹

¹ College of Statistics and Mathematics
 Yunnan University of Finance and Economics
 Kunming, Yunnan 650221, P.R. China

² College of Public Foundation, Yunnan Open University
 (Yunnan Technical College of National Defence Industry)
 Kunming 650500, China

* Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

In this paper, combining line-search technique with viscosity method, inertial algorithm and subgradient algorithm, we propose a new iterative algorithm that does not involve in projection operators to solve the nonmonotone and non-Lipschitzian equilibrium problem in Hilbert space and obtain the strong convergence theorem. In addition, we also use our main result to the variational inequality and the convex minimization problem, and obtain the corresponding strong convergence theorems.

Keywords: equilibrium problem; viscosity method; line-search technique; strong convergence; Hilbert space

Fund projects: Postgraduate Project of Scientific Research Fund of Yunnan Provincial Department of Education (Grant No. 2022Y549).

1. Introduction

Let C be a nonempty closed convex subset of real Hilbert space H with the inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$, $f : C \times C \to \mathbb{R}$ be an equilibrium...
bifunction, the equilibrium problem (EP) associated \(f \) and \(C \), refer to Blum and Oettli \([1]\) is to find a point \(x^* \in C \) such that

\[
(1.1) \quad f(x^*, y) \geq 0, \quad \forall y \in C.
\]

The solution set of \(EP(f, C) \) is denoted by \(S_E \). In addition, the Minty equilibrium problem \([2,3]\) consists in finding a point \(x^* \in C \) such that

\[
f(y, x^*) \leq 0, \quad \forall y \in C,
\]

which is denoted by \(MEP(f, C) \) and its solution set is denoted by \(S_M \). It is well known that the inclusion \(S_M \subset S_E \) holds provided that \(f \) is jointly weakly continuous on \(C \times C \), this means \(S_E \neq \emptyset \) if \(S_M \neq \emptyset \).

The equilibrium problem is an important problem in the fields of nonlinear analysis and optimization. In recent years, equilibrium problem is widely used to solve optimization problem, variational inequality problem, saddle point problem, Nash equilibrium problem of non-cooperative game theory, fixed point problem, complementary problem and minimax problem, etc (See \([1, 4–12]\)). For example, if the equilibrium bifunction \(f(x, y) = \langle A(x), y - x \rangle \) for every \(x, y \in C \), where \(A : C \to H \) is a continuous mapping, the equilibrium problem is reduced to the variational inequality problem.

It is difficult to obtain the exact solution for most nonlinear problems. Therefore, constructing a reasonable iterative algorithm is the most commonly used method to solve these problems.

It is well known that the solution of \(EP(f, C) \) is equivalent to the solution of the following strongly convex programming problem:

\[
\min \{ \lambda f(x, y) + \frac{1}{2} \| x - y \|^2 : y \in C \}, \text{where } \lambda > 0.
\]

To solve the solution of \(EP(f, C) \), when \(f \) is strong monotone and Lipschitzian, Mastroeni \([13]\) introduced the following iteration method and proved that it converges to a solution of \(EP(f, C) \):

\[
x_0 \in C, \quad x_{k+1} = \arg \min \{ \lambda f(x_k, y) + \frac{1}{2} \| x_k - y \|^2 : y \in C \}, \text{where } \lambda > 0.
\]

In 2007, Takahashi, et al. \([14]\) introduced the following algorithm combining viscosity algorithm with proximal method to solve the equilibrium problem: give \(x_0 \in H \), compute, for all \(n \in \mathbb{N} \),

\[
\begin{cases}
 z_n \in C \text{ such that } f(z_n, y) + \frac{1}{r_n} \langle y - z_n, z_n - x_n \rangle \geq 0, \forall y \in C; \\
 x_{n+1} = \theta_n g(x_n) + (1 - \theta_n) S(z_n),
\end{cases}
\]

where \(g \) is a contraction mapping on \(C \) and \(f \) is monotone. They proved that the sequence \(\{x_n\} \) generated by this iteration scheme converges strongly to some \(x^* \in S_E \).
Further when \(f \) is pseudomonotone and Lipschitzian, Flam and Antipin [15] introduced the following iteration method:

\[
\begin{cases}
 x_0 \in C, \\
 y_k = \arg\min\{\lambda_k f(x_k, y) + \frac{1}{2}\|x_k - y\|^2 : y \in C\}, \\
 x_{k+1} = \arg\min\{\lambda_k f(y_k, y) + \frac{1}{2}\|x_k - y\|^2 : y \in C\},
\end{cases}
\]

where \(\lambda_k > 0 \), they proved that the sequence \(\{x_k\} \) generated by this iteration scheme weakly converges to a solution of \(EP(f, C) \).

By using line-search technique and viscosity method, Vuone, et al. [16] proposed the following algorithm 1 to solve the solution of \(EP(f, C) \), where \(f \) is pseudomonotone and jointly weakly continuous, and proved that the iterative sequence generated by algorithm 1 converges strongly to a solution of \(EP(f, C) \):

Algorithm 1.

Step 0. Choose \(\alpha \in (0, 2), \gamma \in (0, 1) \) and the sequences \(\{\alpha_n\} \subset (0, 1), \{\beta_n\} \subset (0, 1) \) and \(\{\lambda_n\} \subset (0, 1) \).

Step 1. Let \(x_0 \in C \). Set \(n = 0 \)

Step 2. Solve the strongly convex program \(\min_{y \in C} \{\lambda_n f(x_n, y) + \frac{1}{2}\|y - x_n\|^2\} \) to obtain the unique solution \(y_n \).

Step 3. If \(y_n = x_n \), then set \(v_n = x_n \) and go to Step 4. Otherwise

Step 3.1. Find \(m \) the smallest non-negative integer such that

\[
\begin{cases}
 v_{n,m} = (1 - \gamma_m)x_n + \gamma_my_n \\
 f(v_{n,m}, x_n) - f(v_{n,m}, y_n) \geq \frac{\alpha}{2\lambda_n}\|x_n - y_n\|^2.
\end{cases}
\]

Step 3.2. Set \(\rho_n = \gamma_m, v_n = v_{n,m} \), and go to Step 4.

Step 4. Select \(g_n \in \partial_2 f(v_n, x_n) \) and compute \(z_n = P_{C \cap H_n}(x_n) \), where \(H_n = \{x \in H | \langle g_n, x_n - x \geq f(v_n, x_n) \rangle \} \).

Step 5. Compute \(x_{n+1} = (1 - \beta_n)t_n + \beta_nSt_n \), with \(t_n = P_C(z_n - \alpha_nFz_n) \).

Step 6. Set \(n := n + 1 \), and go to Step 2.

In 2015, Dinh, et al. [17] proposed a projection algorithm to solve the solution of \(EP(f, C) \) which is based on Bregman distance and Armijo-linesearch technique in Euclidean space and obtained the convergence of the iterative algorithm. In 2016, using Armijo-linesearch technique and projection algorithm, Dinh, et al. [18] introduced a new iterative algorithm for nonmonotone function \(f \). In 2020, Deng and Fang [19] introduced the following algorithm 2 with the assumption that \(f \) is nonmonotone and non-Lipschitzian:

Algorithm 2.

Step 0. Take \(x_0 \in C \), choose parameters \(\theta \in (0, 1) \) and \(\rho > 0 \), and set \(k = 0 \) and \(B_0 = C \).
Step 1. Solve the strongly convex program
\[
\min \{ f(x_k, y) + \frac{\rho}{2} \| y - x_k \|^2 : y \in C \}.
\]
to obtain its unique solution \(y_k \). If \(y_k = x_k \), stop. \(x_k \) is a solution of \(EP(f, C) \). Otherwise, go to Step 2.

Step 2. (Armijo-linesearch) Find \(m_k \) as the smallest positive integer \(m \) satisfying
\[
\left\{ \begin{array}{l}
 z_{k,m} = (1 - \theta_m)x_k + \theta_my_k, \\
 g_{k,m} \in \partial_2 f(z_{k,m}, z_{k,m}), \\
 \langle g_{k,m}, x_k - y_k \rangle \geq \frac{\rho}{2} \| x_k - y_k \|^2.
\end{array} \right.
\]

Step 3. Set \(\theta_k = \theta_{m_k}, z_k = z_{k,m_k}, g_k = g_{k,m_k} \). Take \(\omega_k \in \partial_2 f(z_k, x_k) \) and
\[
H_k = \{ x \in H : \langle \omega_k, x_k - x \rangle \geq f(z_k, x_k) \}.
\]

Step 4. Compute \(\sigma_k = f(z_k, x_k) / \| \omega_k \|^2 \) and
\[
u_k = P_{C \cap H_k}(x_k - \gamma_k \sigma_k \omega_k).
\]

Step 5. Take \(B_{k+1} = \{ x \in B_k : \| x - u_k \| \leq \| x - x_k \| \} \) and compute
\[
x_{k+1} = P_{B_{k+1}}(x_0).
\]

Set \(n := n + 1 \) and go to Step 1.

Although the algorithm 2 does not depend on monotonicity and Lipschitz-type property of the equilibrium function \(f \) and has strong convergence, it needs to compute two projections at each iteration step. Therefore, we focus on constructing a new iterative algorithm which does not involve projections for the equilibrium function without monotonicity and Lipschitzian property.

2. Preliminaries

In this section, we show some basic definitions and common lemmas that will be used in subsequent chapters.

Let \(H \) be a real Hilbert space and \(C \) be a non-empty closed convex subset of \(H \). We use \(\rightharpoonup \) and \(\rightarrow \) to describe weak convergence and strong convergence respectively.

For any \(x, y \in H \) and \(\alpha \in \mathbb{R} \), clearly,
\[
(2.1) \quad \| x + y \|^2 = \| x \|^2 + 2 \langle x, y \rangle + \| y \|^2,
\]
and
\[
(2.2) \quad \| \alpha x + (1 - \alpha) y \|^2 = \alpha \| x \|^2 + (1 - \alpha) \| y \|^2 - \alpha (1 - \alpha) \| x - y \|^2.
\]

Lemma 2.1. (Lemma 1 in [19]) The following properties hold:

(i) \(z = P_C(x) \) if and only if \(\langle x - z, y - z \rangle \leq 0, \forall y \in C \);
(ii) \(\| P_C(x) - P_C(y) \|^2 \leq \| x - y \|^2 - \| P_C(x) - x + y - P_C(y) \|^2, \forall x, y \in C \).
Definition 2.2. (Definition 1 in [19]) A function \(f : \mathbb{H} \to [-\infty, +\infty] \) is said to be lower semicontinuous at \(x \in \mathbb{H} \) if for any sequence \(\{x_k\} \) which converges to \(x \), the \(f(x) \leq \liminf_{k \to \infty} f(x_k) \) holds. A function \(f \) said to be upper semicontinuous at \(x \in \mathbb{H} \) if \(-f\) is lower semicontinuous at \(x \). If \(f \) is lower semicontinuous and upper semicontinuous at \(x \in \mathbb{H} \), then it is continuous at \(x \in \mathbb{H} \). Furthermore, \(f \) is continuous on \(C \) if it is continuous at each \(x \in C \subset \mathbb{H} \).

Definition 2.3. (Definition 2.1 in [18]) A bifunction \(f : C \times C \to \mathbb{R} \) is said to be jointly weakly continuous on \(C \times C \) if for all \(x, y \in C \) and sequences \(\{x_k\}, \{y_k\} \) in \(C \) weakly converging to \(x \) and \(y \), respectively, then \(f(x_k, y_k) \) converges to \(f(x, y) \) as \(k \to \infty \).

To solve the solution of \(EP(f, C) \), we need to make the following assumptions:

(A1) \(f(\cdot, y) \) is convex on \(C \) for each \(y \in C \);
(A2) \(f \) is jointly weakly continuous on \(C \times C \);
(A3) \(f \) is nonmonotone and non-Lipschitzian;
(A4) \(S_M \neq \emptyset \).

Definition 2.4. (Definition 3 in [19]) Let \(f : \mathbb{H} \times \mathbb{H} \to \mathbb{R} \) be a function such that \(f(x, \cdot) \) is convex for all \(x \in \mathbb{H} \). For \(x, y \in \mathbb{H} \), the subdifferential \(\partial_2 f(x, y) \) of \(f(x, \cdot) \) at \(y \) is defined by

\[
\partial_2 f(x, y) = \{ \beta \in \mathbb{H} : f(x, z) - f(x, y) \geq \langle \beta, z - y \rangle, \forall z \in \mathbb{H} \}.
\]

Lemma 2.5. (Lemma 2 in [19]) Let \(f(x, y) \) be a convex differentiable function with respect to \(y \) at \(x = x^* \in C \) and \(\rho > 0 \). Then \(x^* \) is a solution of \(EP(f, C) \) if and only if it is a solution of the auxiliary equilibrium problem:

Find \(x^* \in C : f(x^*, y) + \frac{\rho}{2} \| y - x^* \|^2 \geq 0, \forall y \in C. \)

Lemma 2.6. (Lemma 2.5 in [18]) With assumptions (A1) and (A2), if \(\{z_k\} \subset C \) is a sequence converging strongly to \(z \) and the sequence \(\{w_k\} \subset \partial_2 f(z_k, z_k) \), converges weakly to \(\bar{w} \), then \(\bar{w} \in \partial_2 f(\bar{x}, z) \).

Lemma 2.7. (Proposition 2.1 in [20]) With assumptions (A1) and (A2), for \(\bar{x}, \bar{y} \in C \) and sequence \(\{x_k\}, \{y_k\} \) in \(C \) converging weakly to \(\bar{x} \) and \(\bar{y} \) respectively, it follows that for any \(\varepsilon > 0 \), there exist \(\xi > 0 \) and \(k_\varepsilon \in \mathbb{N} \) such that

\[
\partial_2 f(x_k, y_k) \subset \partial_2 f(\bar{x}, \bar{y}) + \frac{\varepsilon}{\xi} B,
\]

for every \(k \geq k_\varepsilon \), where \(B \) denotes the closed unit ball in \(\mathbb{H} \).

Lemma 2.8. (Lemma 2.6 in [19]) With assumptions (A1) and (A2), if \(\{x_k\} \subset C \) is bounded, \(\rho > 0 \), and \(\{y_k\} \) is a sequence such that

\[
y_k = \arg \min \{ f(x_k, y) + \frac{\rho}{2} \| y - x_k \|^2 : y \in C \},
\]

then \(\{y_k\} \) is bounded.
Lemma 2.9. (Lemma 1 in [21]) Assume that \(\{s_n\}_{n=0}^{\infty} \) is a sequence of non-negative real numbers such that
\[
s_{n+1} \leq (1 - \lambda_n)s_n + \lambda_n\delta_n, \forall n \geq 0,
\]
\[
s_{n+1} \leq s_n - \mu_n + \phi_n, \forall n \geq 0,
\]
where \(\{\lambda_n\} \) is a sequence in \((0,1)\), \(\{\phi_n\}_{n=0}^{\infty} \) is a sequence of nonnegative real numbers, and \(\{\delta\}_{n=0}^{\infty} \), \(\{\phi_n\}_{n=0}^{\infty} \) are two real sequences such that
\begin{enumerate}
 \item \(\sum_{n=0}^{\infty} \lambda_n = \infty; \)
 \item \(\lim_{n \to \infty} \phi_n = 0; \)
 \item \(\lim_{k \to \infty} \mu_{n_k} = 0 \implies \limsup_{n \to \infty} \delta_{n_k} \leq 0 \) for any subsequence \(\{n_k\}_{k=0}^{\infty} \subset \{n\}_{n=0}^{\infty}. \)
\end{enumerate}
Then \(\lim_{n \to \infty} s_n = 0. \)

3. Main results

Motivated by the work of Deng and Fang [19], when equilibrium bifunction \(f \) is nonmonotone and non-Lipschitzian in Hilbert spaces, we combine the viscosity algorithm with the subgradient algorithm to construct a new iterative algorithm 3 to approximate a solution of the equilibrium problem. The strong convergence of the algorithm 3 is proved by referring to the proof methods in Thong [21] and Xie [22]. The new algorithm does not depend on the projection operator.

Before giving the algorithm, we need to make some assumptions:
\begin{enumerate}
 \item (B1) \(T : C \to H \) is a contraction mapping with a constant \(c \in [0,1); \)
 \item (B2) \(\{\alpha_n\}, \{\eta_n\} \) are two sequences in \([0,1)\) satisfying the following conditions:
 \[
 \lim_{n \to \infty} \alpha_n = 0, \quad \lim_{n \to \infty} \eta_n = 0, \quad \sum_{n=1}^{\infty} \eta_n = \infty.
 \]
 \item (B3) \(\{\gamma_n\} \) is a sequence in \((0,2)\) and satisfies \(\liminf_{n \to \infty} \gamma_n(2 - \gamma_n) > 0; \)
 \item (B4) \(\{\tau_n\} \subset [0,\theta) \) for some \(\theta > 0 \) is a positive sequence such that \(\lim_{n \to \infty} \frac{\tau_n}{\eta_n} = 0. \)
 \item (B5) \(f(\cdot,\cdot) \) is an equilibrium bifunction and satisfies assumption A1-A3.
\end{enumerate}

Algorithm 3.

\textbf{Initialization.} Give \(\eta > 0. \) arbitrarily chosen \(x_0, x_1 \in C. \)

\textbf{Iterative Steps.} Calculate \(x_{n+1} \) as follows:

\textbf{Step 1.} Give the sequence \(x_{n-1} \) and \(x_n(n \geq 0), \) choose \(\theta_n \) such that \(0 \leq \theta_n \leq \bar{\theta}_n, \) where
\[
\bar{\theta}_n = \begin{cases}
\min\{\theta, \frac{\tau_n}{\|x_n - x_{n-1}\|}\} & \text{if } x_n \neq x_{n-1}; \\
\theta & \text{if otherwise.}
\end{cases}
\]

\textbf{Step 2.} Set \(w_n = x_n + \theta_n(x_n - x_{n-1}). \)
Step 3. Solve the strongly convex program:

\[
y_n = \arg \min \left\{ f(w_n, y) + \frac{\rho}{2} \| y - w_n \|^2 : y \in C \right\}.
\]

Get the solution \(y_n \). If \(y_n = w_n \), stop. \(w_n \) is an element of \(S_E \). Otherwise, go to Step 4.

Step 4. (Line-search) Find the smallest positive integer \(m \) to satisfy:

\[
\begin{align*}
(u_{n,m} &= (1 - \alpha_m)w_n + \alpha_my_n, \\
\frac{1}{2}f(u_{n,m}, w_n) - f(u_{n,m}, y_n) &\geq \frac{\rho}{2} \| w_n - y_n \|^2.
\end{align*}
\]

Step 5. Set \(\alpha_n = \alpha_{n,m}, u_n = u_{n,m} \), Let \(d_n \in \partial f(u_n, w_n) \) and satisfy:

\[
(w_n - y, d_n) \geq f(u_n, w_n), \forall y \in C.
\]

Step 6. Compute \(z_n = w_n - \gamma_ne_n d_n \), where \(e_n = \frac{f(u_n, w_n)}{\| d_n \|^2} \).

Step 7. Compute \(x_{n+1} = (1 - \eta_n)z_n + \eta_n T(z_n) \).

Set \(n := n + 1 \) and go to Step 1.

Lemma 3.1. The line-search rule \((3.3) \) is well defined when assume A1-A4, B2 hold and \(w_n \neq y_n \).

Proof. Assume that \((3.3) \) is not true. So there exists non-negative integer \(m \) such that:

\[
\begin{align*}
(u_{n,m} &= (1 - \alpha_m)w_n + \alpha_my_n, \\
\frac{1}{2}f(u_{n,m}, w_n) - f(u_{n,m}, y_n) &< \frac{\rho}{2} \| w_n - y_n \|^2.
\end{align*}
\]

Since \(\lim_{m \to \infty} \alpha_m = 0 \), we have \(u_{n,m} \to w_n (m \to \infty) \). Set \(u_{n,m} = w_n \). Since \(f \) is jointly weakly continuous and \(f(w_n, w_n) = 0 \), we have

\[
f(w_n, y_n) + \frac{\rho}{2} \| w_n - y_n \|^2 \geq 0.
\]

On the other hand, since \(y_n \) is a solution of the strongly convex programming problem, it can be obtained

\[
f(w_n, y_n) + \frac{\rho}{2} \| w_n - y_n \|^2 \leq f(w_n, y) + \frac{\rho}{2} \| w_n - y \|^2, \forall y \in C.
\]

we set \(y = w_n \) and get \(f(w_n, y_n) + \frac{\rho}{2} \| w_n - y_n \|^2 \leq 0 \), namely, \(\frac{\rho}{2} \| w_n - y_n \|^2 = 0 \), which implies that \(w_n = y_n \), we get contradiction. \(\square \)

Lemma 3.2. If the algorithm stops at some iteration points \(w_n \), Then \(w_n \) is an element in \(S_E \).

Proof. When the algorithm 3 stops at some iteration points \(w_n \), which means \(y_n = w_n \). Due to \(f(w_n, w_n) = 0 \), so

\[
f(w_n, y_n) + \frac{\rho}{2} \| y_n - w_n \|^2 = 0.
\]
Thus we have

\[f(w_n, y_n) + \frac{\rho}{2} \|w_n - y_n\|^2 \leq f(w_n, y) + \frac{\rho}{2} \|w_n - y\|^2, \forall y \in C. \]

Thus we have \(f(w_n, y) + \frac{\rho}{2} \|y - w_n\|^2 \geq 0 \). By Lemma 2.5, we have \(w_n \in S_E \). \qed

Lemma 3.3. If the assumption A1-A4 hold, then the \(d_n \) in algorithm 3 exists.

Proof. If \(S_M \neq \emptyset \), it means that there exists \(x^* \in S_M \), such that \(f(y, x^*) \leq 0 \) for any \(y \in C \). Set \(y = u_n \), we have \(f(u_n, x^*) \leq 0 \).

Taking \(e \in \partial f(u_n, w_n) \), from the convexity of \(f(u_n, \cdot) \), we get

\[f(u_n, y) - f(u_n, w_n) \geq \langle e, y - w_n \rangle, \forall y \in C. \]

Set \(y = x^* \) and \(e = d_n \), then we have \(\langle d_n, w_n - x^* \rangle \geq f(u_n, w_n) - f(u_n, x^*) \geq f(u_n, w_n) \). Hence, the \(d_n \) in algorithm 3 exists. \qed

Lemma 3.4. Let \(\{w_n\} \) and \(\{y_n\} \) be the two sequences generated by algorithm 3. If \(w_{n_k} \rightharpoonup w \) as \(k \to \infty \) and \(\lim_{k \to \infty} \|y_{n_k} - w_{n_k}\| = 0 \), then \(w \in S_E \).

Proof. Let \(i_C \) be the indicator function of \(C \), i.e.

\[i_C y = \begin{cases} 0 & y \in C, \\ \infty & y \notin C. \end{cases} \]

From the definition of \(y_n \) in algorithm 3, we get

\[y_n = \arg \min f(w_n, y) + \frac{\rho}{2} \|y - w_n\|^2 + i_C y. \]

According to generalized Fermat’s theorem, we have

\[0 \in \partial f(w_n, y_n) + \rho(y_n - w_n) + N_C(y_n), \]

where \(N_C(y_n) \) is the norm cone of \(C \) at \(y_n \), which is defined by

\[N_C(y_n) = \{ \zeta \in H : \langle \zeta, y - y_n \rangle \leq 0, \forall y \in C \}. \]

Namely, there exists \(\beta \in \partial f(w_n, y_n) \) such that \(0 = \beta + \rho(y_n - w_n) + \zeta \), so \(\beta = \rho(w_n - y_n) - \zeta \).

On the other hand, due to \(\beta \in \partial f(w_n, y_n) \), we have

\[f(w_n, y) - f(w_n, y_n) \geq \langle \beta, y - y_n \rangle = \langle \rho(w_n - y_n - \zeta), y - y_n \rangle = \langle \rho(w_n - y_n), y - y_n \rangle - \langle \zeta, y - y_n \rangle. \]

Since \(w_{n_k} \rightharpoonup w \) and \(\lim_{k \to \infty} \|y_{n_k} - w_{n_k}\| = 0 \), we get \(y_{n_k} \rightharpoonup w \). Taking the limit as \(k \to \infty \), since \(f \) be jointly weakly continuous, we obtain

\[f(w, y) - f(w, w) \geq \rho \langle w - w, y - w \rangle = 0, \]

this implies that

\[f(w, y) \geq 0, \forall y \in C. \]

Therefore \(w \in S_E \). \qed
Theorem 3.5. Let \(\{x_n\} \) be the sequence generated by algorithm 3, assume that A1-A4 and B1-B4 hold. Then the sequence \(\{x_n\} \) converges strongly to an element \(q \in S_E \), where \(q = P_{S_E}(T(q)) \).

Proof. We divide the proof into six claims.

Claim 1. For any certain point \(p \in S_E \), the following inequality holds:
\[
\|z_n - p\|^2 \leq \|w_n - p\|^2 - \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2.
\]

Indeed, by (3.4), we have
\[
\langle w_n - p, d_n \rangle \geq f(u_n, w_n) = e_n \|d_n\|^2.
\]

It follows from the definition of \(z_n \) and (3.5) that
\[
\|z_n - p\|^2 = \|w_n - \gamma_n e_n d_n - p\|^2
= \|w_n - p\|^2 - 2 \gamma_n e_n \langle w_n - p, d_n \rangle + \gamma_n^2 e_n^2 \|d_n\|^2
\leq \|w_n - p\|^2 - \gamma_n(2 - \gamma_n)(e_n \|d_n\|)^2
= \|w_n - p\|^2 - \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2.
\]

Therefore, the claim 1 holds.

Claim 2. We prove that the inequality \(\|w_n - y_n\|^2 \leq \frac{2}{\rho(\gamma_n e_n)^2} \|z_n - w_n\|^2 \) holds.

By line-search technique (3.3), we get
\[
\|w_n - y_n\|^2 \leq \frac{2}{\rho} \langle f(u_n, w_n) - f(u_n, y_n) \rangle
\leq \frac{2}{\rho} \langle w_n - y_n, d_n \rangle \leq \|w_n - y_n\| \|d_n\|.
\]

Thus, we have
\[
\frac{\rho}{2} \|w_n - y_n\| \leq \|d_n\|.
\]

From the definition of \(z_n \) and (3.8), we get
\[
\|z_n - w_n\|^2 = \gamma_n^2 e_n^2 \|d_n\|^2 \geq \frac{2 \gamma_n^2 e_n^2}{\rho} \|w_n - y_n\|^2.
\]

It follow from (3.9) that \(\|w_n - y_n\|^2 \leq \frac{2}{\rho(\gamma_n e_n)^2} \|z_n - w_n\|^2 \), so the claim 2 is proved.

Claim 3. Next, we prove that the \(\{x_n\} \) is bounded. Indeed, according to claim 1, we have
\[
\|z_n - p\| \leq \|w_n - p\|.
\]
Thus
\[
\|x_{n+1} - p\| = \|(1 - \eta_n)z_n + \eta_n T(z_n)\|
\]
\[
= \|(1 - \eta_n)(z_n - p) + \eta_n (T(z_n) - p)\|
\]
\[
\leq (1 - \eta_n)\|z_n - p\| + \eta_n \|T(z_n) - p\|
\]
\[
\leq (1 - \eta_n)\|z_n - p\| + \eta_n \|T(z_n) - T(p)\| + \eta_n \|T(p) - p\|
\]
\[
\leq (1 - \eta_n(1-c))\|z_n - p\| + \eta_n \|T(p) - p\|
\]
\[
\leq (1 - \eta_n(1-c))\|w_n - p\| + \eta_n \|T(p) - p\|. \tag{3.11}
\]

By (3.1), we have \(\lim_{n \to \infty} \frac{x_n}{\eta_n} = 0\) for all \(n \geq 1\). In addition, since \(\lim_{n \to \infty} \frac{x_n}{\eta_n} = 0\), we have \(\lim_{n \to \infty} \frac{x_n - x_{n-1}}{\eta_n} = 0\). Therefore, there exists a constant \(M_1 \geq 0\), such that
\[
\frac{\theta_n}{\eta_n}\|x_n - x_{n-1}\| \leq M_1, \forall n \geq 1. \tag{3.12}
\]

By the definition of \(w_n\) and (3.12), we get
\[
\|w_n - p\| = \|x_n + \theta_n(x_n - x_{n-1}) - p\|
\]
\[
\leq \|x_n - p\| + \theta_n\|x_n - x_{n-1}\|
\]
\[
= \|x_n - p\| + \eta_n \cdot \frac{\theta_n}{\eta_n}\|x_n - x_{n-1}\|
\]
\[
\leq \|x_n - p\| + \eta_n M_1. \tag{3.13}
\]

Substitute (3.13) into (3.11), we have
\[
\|x_{n+1} - p\| \leq (1 - \eta_n(1-c))\|w_n - p\| + \eta_n \|T(p) - p\|
\]
\[
\leq (1 - \eta_n(1-c))\|(x_n - p) + \eta_n M_1\| + \eta_n \|T(p) - p\|
\]
\[
= (1 - \eta_n(1-c))\|x_n - p\| + (1 - \eta_n(1-c))\eta_n M_1 + \eta_n \|T(p) - p\|
\]
\[
\leq (1 - \eta_n(1-c))\|x_n - p\| + \eta_n M_1 + \eta_n \|T(p) - p\|
\]
\[
= (1 - \eta_n(1-c))\|x_n - p\| + \eta_n(1-c) \cdot \frac{M_1 + \|T(p) - p\|}{1-c}. \tag{3.14}
\]

\[
\leq \max \left\{ \|x_n - p\|, \frac{M_1 + \|T(p) - p\|}{1-c} \right\}
\]
\[
\leq \max \left\{ \|x_{n-1} - p\|, \frac{M_1 + \|T(p) - p\|}{1-c} \right\}
\]
\[
\leq \cdots
\]
\[
\leq \max \left\{ \|x_0 - p\|, \frac{M_1 + \|T(p) - p\|}{1-c} \right\}
\]

It implies that the sequence \(\{x_n\}\) is bounded.
Claim 4. We prove that
\begin{equation}
\frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2 \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2 + \eta_n M_4.
\end{equation}

Indeed, from the definition of \(x_{n+1}\), we have
\begin{align*}
\|x_{n+1} - p\|^2 &\leq \|(1 - \eta_n)z_n + \eta_n T(z_n) - p\|^2 \\
&= \|(1 - \eta_n)(z_n - p) + \eta_n (T(z_n) - p)\|^2 \\
&= (1 - \eta_n)\|z_n - p\|^2 + \eta_n \|T(z_n) - p\|^2 - \eta_n (1 - \eta_n)\|z_n - T(z_n)\|^2 \\
&\leq (1 - \eta_n)\|z_n - p\|^2 + \eta_n \|T(z_n) - p\|^2 \\
&\leq (1 - \eta_n)\|z_n - p\|^2 + \eta_n (\|T(z_n - T(p))\| + \|T(p) - p\|)^2 \\
&\leq (1 - \eta_n)\|z_n - p\|^2 + \eta_n (\|z_n - p\| + \|T(p) - p\|)^2 \\
&\leq (1 - \eta_n)\|z_n - p\|^2 + \eta_n (2\|z_n - p\|\|T(p) - p\| + \|T(p) - p\|)^2 \\
&= \|z_n - p\|^2 + \eta_n (2\|z_n - p\|\|T(p) - p\| + \|T(p) - p\|)^2.
\end{align*}

From claim 3, we can get
\[\|z_n - p\| \leq \|w_n - p\| \leq \|x_n - p\| + \eta_n M_1.\]

By the assumption B3, we have \(\lim_{n \to \infty} \eta_n = 0\). So \(\|z_n - p\|\) is bounded, i.e. there exists constant \(N\) such that \(\|z_n - p\| \leq N\). Further we get
\[\|x_{n+1} - p\|^2 \leq \|z_n - p\|^2 + \eta_n M_2,\]
where \(M_2 := 2N\|T(p) - p\| + \|T(p) - p\|^2\).

Form claim 1 and (3.13), we get
\begin{equation}
\|z_n - p\|^2 \leq \|w_n - p\|^2 - \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2,
\end{equation}
and
\begin{equation}
\|w_n - p\|^2 \leq (\|x_n - p\| + \eta_n M_1)^2 \\
= \|x_n - p\|^2 + \eta_n (2M_1\|x_n - p\| + \eta_n M_1^2) \\
\leq \|x_n - p\|^2 + \eta_n M_3,
\end{equation}
where \(M_3 := 2M_1\|x_n - p\| + \eta_n M_1^2\).

It follows from (3.16), (3.17) and (3.18) that
\begin{align*}
\|x_{n+1} - p\|^2 &\leq \|w_n - p\|^2 - \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2 + \eta_n M_2 \\
&\leq \|x_n - p\|^2 - \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|^2 + \eta_n M_4,
\end{align*}
where \(M_4 := M_2 + M_3\). The proof of claim 4 is completed.
Claim 5. We prove that
\[
\|x_{n+1} - p\|^2 \leq (1 - \eta_n(1 - c))\|x_n - p\|^2 \\
+ \eta_n(1 - c) \left[\frac{2}{1 - c} \langle T(p) - p, x_{n+1} - p \rangle + \frac{3M}{1 - c} \frac{\theta_n}{\eta_n} \|x_n - x_{n+1}\| \right].
\]

By the definition of \(x_{n+1}\) and (3.10), we have
\[
\|x_{n+1} - p\|^2 = \|(1 - \eta_n)z_n + \eta_n T(z_n) - p\|^2 \\
= \|(1 - \eta_n)(z_n - p) + \eta_n(T(z_n) - T(p)) + \eta_n(T(p) - p)\|^2 \\
\leq \|(1 - \eta_n)(z_n - p) + \eta_n(T(z_n) - T(p))\|^2 + 2\eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
(3.20) \leq (1 - \eta_n)\|z_n - p\|^2 + \eta_n\|T(z_n) - T(p)\|^2 + 2\eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
\leq (1 - \eta_n(1 - c))\|z_n - p\|^2 + 2\eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
\leq (1 - \eta_n(1 - c))\|w_n - p\|^2 + 2\eta_n\langle T(p) - p, x_{n+1} - p \rangle.
\]

In addition, from the definition of \(w_n\), we have
\[
\|w_n\|^2 = \|x_n + \theta_n(x_n - x_{n-1}) - p\|^2 \\
(3.21) = \|x_n - p\|^2 + 2\theta_n\langle x_n - p, x_n - x_{n-1} \rangle + \theta_n^2\|x_n - x_{n-1}\|^2 \\
\leq \|x_n - p\|^2 + 2\theta_n\|x_n - p\|\|x_n - x_{n-1}\| + \theta_n^2\|x_n - x_{n-1}\|^2.
\]

So, combining (3.20) with (3.21), we obtain
\[
\|x_{n+1} - p\|^2 \leq (1 - \eta_n(1 - c))\|x_n - p\|^2 + 2\theta_n\|x_n - p\|\|x_n - x_{n-1}\| \\
+ \theta_n^2\|x_n - x_{n-1}\|^2 + \frac{2}{1 - c} \eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
= (1 - \eta_n(1 - c))\|x_n - p\|^2 + 2\theta_n(1 - \eta_n(1 - c))\|x_n - p\|\|x_n - x_{n-1}\| \\
+ \theta_n^2(1 - \eta_n(1 - c))\|x_n - x_{n-1}\|^2 + \frac{2}{1 - c} \eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
\leq (1 - \eta_n(1 - c))\|x_n - p\|^2 + 2\theta_n\|x_n - p\|\|x_n - x_{n-1}\| \\
+ \theta_n^2\|x_n - x_{n-1}\|^2 + \frac{2}{1 - c} \eta_n\langle T(p) - p, x_{n+1} - p \rangle \\
(3.22) \leq (1 - \eta_n(1 - c))\|x_n - p\|^2 + \eta_n(1 - c)\left[\frac{2}{1 - c} \langle T(p) - p, x_{n+1} - p \rangle \right] \\
+ 3M\theta_n\|x_n - x_{n-1}\| \\
\leq (1 - \eta_n(1 - c))\|x_n - p\|^2 + \eta_n(1 - c)\left[\frac{2}{1 - c} \langle T(p) - p, x_{n+1} - p \rangle \right] \\
+ \frac{3M}{1 - c} \frac{\theta_n}{\eta_n} \|x_n - x_{n-1}\|,
\]

where \(M = \sup_{n \in N} \{\|x_n - p\|, \theta\|x_n - x_{n-1}\|\}\).

Claim 6. We prove that \(\{x_n\}\) converges strongly to \(q\), where \(q = P_{S_E}(T(q))\).
Indeed, we set
\[s_n = \|x_n - q\|, \quad \lambda_n = \eta_n(1 - c), \]
\[\delta_n = \frac{2}{1 - c} \langle T(q) - q, x_{n+1} - q \rangle + \frac{3M}{1 - c} \cdot \frac{\theta_n}{\eta_n} \|x_n - x_{n-1}\|, \]
\[\mu_n = \frac{2 - \gamma_n}{\gamma_n} \|z_n - w_n\|, \quad \phi_n = \eta_n M_4. \]

By combining Lemma 2.9 with claim 4 and claim 5, we have
\[s_{n+1} \leq (1 - \lambda_n) s_n + \lambda_n \delta_n, \]
\[s_{n+1} \leq s_n - \mu_n + \phi_n. \]

It is easy to prove that condition (i) and (ii) of Lemma 2.9 are satisfied. By (B1), we have\[\lim_{n \to \infty} \lambda_n = \infty \text{ and } \lim_{n \to \infty} \phi_n = 0. \]

Next, we just have to prove \(\lim \sup_{k \to \infty} \delta_{n_k} \leq 0. \)

From \(\lim_{k \to \infty} \mu_{n_k} = 0, \) we get
\[\lim_{k \to \infty} \|z_{n_k} - w_{n_k}\| = 0. \] (3.23)

By claim 2, we have
\[\lim_{k \to \infty} \|w_{n_k} - y_{n_k}\| = 0. \] (3.24)

By using \(\lim_{n \to \infty} \eta_n = 0 \) and \(x_{n+1} = (1 - \eta_n)z_n + \eta_n T(z_n), \) we get
\[\lim_{k \to \infty} \|x_{n_k+1} - z_{n_k}\| = \lim_{k \to \infty} \eta_{n_k} \|z_{n_k} - T(z_{n_k})\| = 0, \] (3.25)
and
\[\lim_{k \to \infty} \|x_{n_k+1} - w_{n_k}\| = \lim_{k \to \infty} \theta_{n_k} \|x_{n_k} - x_{n_k-1}\| = \lim_{k \to \infty} \eta_{n_k} \cdot \frac{\theta_{n_k}}{\eta_{n_k}} \|x_{n_k} - x_{n_k-1}\| = 0. \] (3.26)

Furthermore, we get
\[\|x_{n_k+1} - x_{n_k}\| \leq \|x_{n_k+1} - z_{n_k}\| + \|z_{n_k} - w_{n_k}\| + \|w_{n_k} - x_{n_k}\| \to 0. \] (3.27)

From claim 3, we know that \(\{x_{n_k}\} \) is bounded. So there exists a subsequence \(\{x_{n_{kj}}\} \) of \(\{x_{n_k}\}, \) which converges weakly to some \(w \in H, \) such that
\[\lim_{j \to \infty} \langle T(q) - q, x_{n_{kj}} - q \rangle = \lim_{j \to \infty} \langle T(q) - q, x_{n_{kj}} - q \rangle = \langle T(q) - q, w - q \rangle. \] (3.28)

From (3.26), we know that \(u_{n_{kj}} \to w. \) Therefore it follows from (3.24) and Lemma 3.4 that \(w \in S_E. \) Further from (3.28), we have
\[\lim \sup_{k \to \infty} \langle T(q) - q, x_{n_k}\rangle = \langle T(q) - q, w - q \rangle \leq 0. \] (3.29)
Combining (3.27) with (3.29), we get
\[
\limsup_{k \to \infty} \langle T(q) - q, x_{n_k + 1} - q \rangle \\
\leq \limsup_{k \to \infty} \langle T(q) - q, x_{n_k + 1} - x_n \rangle + \limsup_{k \to \infty} \langle T(q) - q, x_n - q \rangle \\
\leq 0.
\]

Hence, by Lemma 2.9, we conclude that
\[
\lim_{n \to \infty} \|x_n - q\| = 0.
\]

The proof of the Theorem 3.5 is completed. \(\square\)

4. Applications

In this section, we apply the main results to solve variational inequality problem and convex minimization problem in Hilbert spaces.

(I) Application to the variational inequality problem

Let \(C\) be a nonempty closed convex subset of real Hilbert space \(H\) with the inner product \(\langle \cdot , \cdot \rangle\) and the induced norm \(\| \cdot \|\). Assume that \(A : C \to H\) is a mapping. Set \(f(x, y) = \langle A(x), y - x \rangle\), the equilibrium problem reduces to the variational inequality problem: find \(x^* \in C\) such that
\[
\langle A(x^*), y - x^* \rangle \geq 0 \text{ for every } y \in C.
\]
The set of solution of the variational inequality problem is denoted \(S_{VI}\). In order to obtain the corresponding algorithm 4 and Theorem 4.1, we assume that the following assumptions on \(A\) hold:

(C1) \(A\) is convex and subdifferentiable on \(H\);
(C2) \(A\) is weakly continuous for on \(C\), i.e if \(\{x_n\}\) is a sequences in \(C\) and \(x_n \rightharpoonup x\), then \(A(x_n) \to A(x)\);
(C3) The set solution of \(\langle Ay, x^* - y \rangle \leq 0\) is non-empty.

Algorithm 4.

Initialization. Give \(\eta > 0\). Let \(x_0, x_1 \in C\) be arbitrary.

Iterative Steps. Calculate \(x_{n+1}\) as follows:

Step 1. Give the iterates \(x_{n-1}\) and \(x_n(n \geq 0)\), choose \(\theta_n\) such that \(0 \leq \theta_n \leq \bar{\theta}_n\), where
\[
\bar{\theta}_n = \begin{cases}
\min\{\theta, \frac{x_n}{\|x_n - x_{n-1}\|}\} & \text{if } x_n \neq x_{n-1}, \\
\theta & \text{if otherwise.}
\end{cases}
\] (4.1)

Step 2. Set \(w_n = x_n + \theta_n(x_n - x_{n-1})\).

Step 3. Compute
\[
y_n = P_C(w_n - \frac{1}{\rho} A(w_n)).
\]
Get the solution y_n. If $y_n = w_n$, stop. w_n is an element of S_{VI}. Otherwise, go to Step4.

Step4. (line-search) Find m_n in the smallest positive integer m to satisfy:

$$
\begin{cases}
u_{n,m} = (1 - \alpha_m)w_n + \alpha_my_n, \\
\langle A(u_{n,m}), w_n - y_n \rangle \geq \frac{\rho}{2} \|w_n - y_n\|^2.
\end{cases}
$$

Step5. Set $\alpha_n = \alpha_{n,m}, u_n = u_{n,m}$. Let $d_n \in \partial_2 \langle A(u_n), w_n - u_n \rangle$ and satisfy the following condition:

$$
\langle w_n - y, d_n \rangle \geq \langle A(u_n), w_n - u_n \rangle, \forall y \in C.
$$

Step6. Compute $z_n = w_n - \gamma_ne_n d_n$, where $e_n = \frac{\langle A(u_n), w_n - u_n \rangle}{\|d_n\|^2}$.

Step7. Compute $x_{n+1} = (1 - \eta_n)z_n + \eta_n T(z_n)$.

Set $n := n + 1$ and go to **Step1**.

Theorem 4.1. Let $\{x_n\}$ be the sequence generated by algorithm 4 and assume that C1-C2 and B1-B4 hold. The sequence $\{x_n\}$ converges strongly to an element $p \in S_{VI}$, where $p = P_{S_{VI}}(T(p))$.

(II) Application to the convex minimization problem

Let $\varphi : C \to \mathbb{R}$ be a convex and differentiable function. The convex minimization problem is as follows:

$$
\text{minimize } \varphi(x), \text{ where } x \in C.
$$

The set of solution of the convex minimization problem is denoted by S_{CMP}. It is well known that a point $x^* \in C$ is a solution of the convex minimization problem if and only if it is a solution of the following variational inequality problem (see [23]):

$$
\langle \nabla \varphi(x^*), y - x^* \rangle \geq 0, \forall y \in C.
$$

Obviously, set $A(x) = \nabla \varphi(x)$, the convex minimization problem reduces to the variational inequality problem. In order to obtain the corresponding algorithm 5 and Theorem 4.2, we assume that the following assumptions on φ hold:

(D1) $\nabla \varphi$ is convex and subdifferentiable on \mathbb{R};

(D2) $\nabla \varphi$ is weakly continuous for on \mathbb{R}, i.e if $\{x_n\}$ are sequences in C and converges weakly to x, then $\nabla \varphi(x_n) \to \nabla \varphi(x)$;

(D3) The set solution of $\langle \nabla \varphi(y), x^* - y \rangle \leq 0$ is non-empty.

Therefore, we get the following Theorem 4.2.

Theorem 4.2. Let $\{x_n\}$ be the sequence generated by algorithm 4 and assume B1-B4 and D1-D3 hold. The sequence $\{x_n\}$ converges strongly to an element $p \in S_{CMP}$, where $p = P_{S_{CMP}}(T(p))$.
Acknowledgements The authors would like to thank the associate editor and the anonymous referee for his/her comments that helped us improve this article.

REFERENCES

Inertial extragradient-viscosity algorithms

Received: February 7, 2023; Published: March 10, 2023