Prime Counting Function in Base of $\frac{x}{3}$

Israel Ramirez Nuñez

High School, Universidad del Valle de México (Campus Chihuahua), Mexico

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

In this study, we present the function $H(x)_p$ based on $P_k(x, a)$ introduced by Lehmer. $H(x)_p$ denotes the number of numbers that are not divisible by prime numbers $< p$ but are divisible by p. Herein, we show that $H(x)_p$ can be obtained only using $\frac{x}{3}$. We also present our own prime counting function based on $H(x)_p$, that is, $\frac{x}{3}$.

Mathematics Subject Classification: 11A41, 11N05

Keywords: Prime numbers, prime counting function, integer sequences, arithmetic functions

1 Introduction

A prime counting function represents the number of primes below a certain limit. $P_k(x, a)$ denotes the number of products $\leq x$ of k primes, each greater than p_a. Therefore, the difference between $H(x)_p$ and $P_k(x, a)$ is that $P_k(x, a)$ only takes primes greater than p_a while $H(x)_p$ takes primes greater than or equal to p_a, where p_a is required to be in the product $[1–2]$. p_s represents the prime in the position s.

For every natural number a, prime number c, and composite number b, we have the following definitions:

Definitions.

\[H(x)_p := \# \{ ap_s \leq x | p < p_s \uparrow a \} \] (1)
\[R_s \left(\frac{x}{p_s} \right) \coloneqq \# \left[cp_s \leq x | p_s \leq c \right]. \] \hspace{1cm} (2)

This indicates that \(R_s \left(\frac{x}{p_s} \right) = \pi \left(\frac{x}{p_s} \right) - s + 1 \)

\[T_p \left(\frac{x}{p_s} \right) \coloneqq \# \left[bp_s \leq x | p < p_s \dagger b \right]. \] \hspace{1cm} (3)

Form the previous definitions,

\[H(x)_p = R_p \left(\frac{x}{p_s} \right) + T_p \left(\frac{x}{p_s} \right) + 1. \] \hspace{1cm} (4)

Therefore, \(H(x)_p \) satisifies

\[1 + \sum_{s=1}^{m} H(x)_p = x. \] \hspace{1cm} (5)

In the next chapter, we present \(I(x) \), where, for \(x \) real,

\[I(x) := 1 + \sum_{s=3}^{x} H(x)_p. \] \hspace{1cm} (6)

2 Obtaining \(I(x) \)

Lemma 2.1 From equation 6 and taking \(3|x \),

\[\frac{x}{3} = I(x). \] \hspace{1cm} (7)

Proof:

For \(2|x \),

\[H(x)_2 = \frac{x}{2} \] \hspace{1cm} (8)

and

\[H(x)_3 = \frac{x}{3} - \frac{x}{2+3}. \] \hspace{1cm} (9)

For \(6|x \), we obtain,

\[x - H(x)_2 - H(x)_3 = x - \frac{x}{2} - \frac{x}{6} = \frac{x}{3}. \]

Theorem 2.1 From lemma 2.1 and \(x \) as a positive natural number,
Prime counting function in base of \(\frac{x}{3} \)

\[
I(x) = \begin{cases}
\left\lceil \frac{x+1}{3} \right\rceil & \text{if } 3 \nmid x \text{ and } 3 \mid x + 1 \\
\left\lceil \frac{x+2}{3} \right\rceil & \text{if } 2, 3 \mid x \text{ and } 3 \mid x + 2. \\
\left\lceil \frac{x}{3} \right\rceil & \text{otherwise}
\end{cases}
\tag{10}
\]

Proof:
Consider a natural number \(c \).
Every number \(c \), where \(c \in I^{-1}(x) \), is between \(\frac{x}{3} \) and \(\frac{x+3}{3} \); therefore, 1 or 2 must be added to \(c \) such that the result is the next number divisible by 3. For example, \(\frac{c+1}{3} \in I(x) \) or \(\frac{c+2}{3} \in I(x) \).

3 Functions involving \(I(x) \)

Here, we introduce \(T(x) \), which defines the number of composite numbers that are not divisible by 2 and 3 up to \(x \), and \(R(x) \), where \(R(x) = \pi(x) - 2 \) for \(3 \leq x \).

Therefore,

\[
R(x) + T(x) + 1 = I(x). \tag{11}
\]

Lemma 3.1 From equations 2 and 3 and the definition of \(T(x) \),

\[
T(x) = \sum_{s=1}^{\pi} R_p \left(\frac{x}{p_s} \right) + T_p \left(\frac{x}{p_s} \right). \tag{12}
\]

Proof:

\[
1 + \left(\sum_{s=1}^{\pi} H(x)p_s \right) - H(x)_2 - H(x)_3 = 1 + \left(\sum_{s=1}^{\pi} R_p \left(\frac{x}{p_s} \right) + T_p \left(\frac{x}{p_s} \right) + 1 \right) - \left(R_2 \left(\frac{x}{p_1} \right) + T_2 \left(\frac{x}{p_1} \right) + 1 \right) - \left(R_3 \left(\frac{x}{p_2} \right) + T_3 \left(\frac{x}{p_2} \right) + 1 \right) = 1 + \sum_{s=3}^{\pi} \sum_{p_s=1}^{\pi} R_p \left(\frac{x}{p_s} \right) + T_p \left(\frac{x}{p_s} \right),
\]

where

\[
\sum_{s=3}^{\pi} 1 = R(x)
\]

and

\[
T(x) = \sum_{s=3}^{\pi} R_s \left(\frac{x}{p_s} \right) + T_p \left(\frac{x}{p_s} \right).
\]

Lemma 3.2 Consider equation 2 and the definition of \(R(x) \). Then,
\[R \left(\frac{x}{p_s} \right) - R_p \left(\frac{x}{p_s} \right) = s - 3. \] (13)

Proof:
We know that \(R_p \left(\frac{x}{p_s} \right) = \pi \left(\frac{x}{p_s} \right) - s + 1 \) and \(R \left(\frac{x}{p_s} \right) = \pi \left(\frac{x}{p_s} \right) - 2 \)

\[R \left(\frac{x}{p_s} \right) - R_p \left(\frac{x}{p_s} \right) = \left(\pi \left(\frac{x}{p_s} \right) - 2 \right) - \left(\pi \left(\frac{x}{p_s} \right) - s + 1 \right) = s - 3. \]

Lemma 3.3 Consider equations 12 and 3. The difference between them is

\[T \left(\frac{x}{p_s} \right) - T_p \left(\frac{x}{p_s} \right) = \sum_{i=3}^{s-1} H \left(\frac{x}{p_k} \right)_p - 1. \] (14)

Proof:
In this case, \(p_s \) is constant for every prime \(p_k \), where \(3 \leq k \leq s - 1 \).

\[T \left(\frac{x}{p_s} \right) = \sum_{i=3}^{k} R_p \left(\frac{x}{p_k p_s} \right) + T_p \left(\frac{x}{p_k p_s} \right) \] (15)

Equation 15 shows that, for all the primes \(p_k \), we obtain numbers divisible by primes \(< p_s \); therefore, to obtain \(T_p \left(\frac{x}{p_s} \right) \), we must eliminate all those numbers, meaning

\[T \left(\frac{x}{p_s} \right) - \sum_{i=3}^{s-1} H \left(\frac{x}{p_k} \right)_p - 1 = T_p \left(\frac{x}{p_s} \right). \]

From lemmas 3.1, 3.2, and 3.3, we obtain

\[T(x) = \sum_{i=3}^{s} \left(R \left(\frac{x}{p_s} \right) + T \left(\frac{x}{p_s} \right) - s + 3 - d \right) \] (16)

and \(\sum_{i=3}^{s-1} H \left(\frac{x}{p_k} \right)_p - 1 = d \), for a reduction in the computing.

4 \(\frac{x}{3} \) and \(\pi(x) \)

Theorem 4.1
For a natural \(x \),

\[T(x) = \sum_{i=3}^{s} \left(I \left(\frac{x}{p_s} \right) - 1 \right) - s + 3 - d \]. (17)

Proof:
From equation 11, we replace \(R(x) + T(x) \) for \(I(x) - 1 \) and obtain equation 17.
Prime counting function in base of $\frac{x}{3}$

Then, by reducing the equation, we obtain

$$
(I\left(\frac{x}{p_{sh}}\right) - 1) - s_k + 3 := \sum_{i=3}^{\infty} \left(I\left(\frac{x}{p_i}\right) - 1 \right) - s + 3 - d,
$$

where the subscripts represent positions. For example, if we have p_4 and $H\left(\frac{x}{p_4p_3}\right)_5 - 1$, which we must eliminate in relation to p_4. Then

$$
H\left(\frac{x}{p_4p_3}\right)_5 - 1 := (I\left(\frac{x}{p_4}\right) - 1) - s_3 + 3.
$$

Theorem 4.2 The prime counting function $\pi(x)$ is given by

$$
\pi(x) = I(x) - \left(I\left(\frac{x}{p_{sk}}\right) - 1 \right) - s_k + 3 + 1.
$$

Proof:

From equation 11 and the definition of $R(x)$,

$$
\pi(x) = I(x) - T(x) + 1.
$$

Therefore, from theorem 4.1, we obtain theorem 4.2.

Example:

$$
I(100) = \left\| \frac{99 + 1}{3} \right\| = \frac{99}{3} = 33
$$

$$
T(100) = \left((I\left(\frac{x}{p_3}\right) - 1) - 3 + 3 \right) + \left(I\left(\frac{x}{p_4}\right) - 1 \right) - 4 + 3 = (I(20) - 1) + (I(14) - 1) - 1 = \frac{19 + 2}{3} + \frac{14 + 1}{3} - 3 = 9
$$

$$
\pi(100) = 33 - 9 + 1 = 25.
$$

Note:

In $I(x) - T(x)$, all the composite numbers are eliminated from a set of numbers, which is the same as the Eratosthenes algorithm. Thus, when we use $T(x)$, we obtain the Eratosthenes algorithm. [3]

Conclusion

We have shown a prime number counting function and presented the function $H(x)_p$ that has a simple relation with $\frac{x}{3}$.
References

Received: March 17, 2021; Published: April 8, 2021