S \mathcal{I} F\text{-ring}

Raida D. Mahmood and Khedher J. Khider

College of Computer Science and Mathematics
University of Mosul
Mosul, Iraq

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2020 Hikari Ltd.

Abstract

A ring \mathcal{R} is called right simple \mathcal{I}\text{-flat} (or right S\mathcal{I}F\text{-ring for short) if, for every simple right \mathcal{R} -module is \mathcal{I}\text{-flat}. In this paper, several properties of this class of rings are given, some interesting results are obtained. Right S\mathcal{I}F\text{-rings, } \mathcal{K}\mathcal{S} rings are studied, several conditions under which right S\mathcal{I}F\text{-rings are reduced rings, strongly } \mathcal{V}\text{-regular rings are given.

Keywords: } \mathcal{I}\text{-flat, } \mathcal{I}\text{-regular ring, } \mathcal{K}\mathcal{S} ring, strongly } \mathcal{V}\text{-regular ring

1 Introduction

Throughout this paper, \mathcal{R} will be an associative ring with identity and all modules are unitary right \mathcal{R} -modules. For \sigma \in \mathcal{R}, r(\sigma), l(\sigma) denoted the right annihilator and the left annihilator of \sigma, respectively. We write \mathcal{Y}(\mathcal{R}) (\mathcal{Z}(\mathcal{R})), \mathcal{K}(\mathcal{R}), \mathcal{I}(\mathcal{R}), \mathcal{S} for the right (left) singular ideal, the set of nilpotent element, Jacobson radical of \mathcal{R} and Tansor product, respectively. A ring \mathcal{R} is reversible iff \(r(\sigma)l(\sigma)) is an ideal of \mathcal{R}, for every \sigma \in \mathcal{R} [3].

Generalization of flat have been discussed in many papers (see [4], [7], [10]). \mathcal{R} is right (left) SF\text{-ring ([7]), if simple right (left) } \mathcal{R}\text{-modules are flat. In ([10], [6]), S\mathcal{N}F\text{-rings are defined and studied. A ring } \mathcal{R} \text{ is called right (left) S\mathcal{N}F\text{-ring, if simple right (left) } \mathcal{R}\text{-modules are } \mathcal{K}\text{-flat. The nice structure of S\mathcal{N}F\text{-rings draws our attention to define S\mathcal{I}F\text{-ring and to investigate } \mathcal{I}\text{-regular rings, strongly } \mathcal{V}\text{-regular rings and reduced rings.

As usual, \mathcal{R} is a reduced ring if } \mathcal{K}(\mathcal{R}) = 0 [7]. \mathcal{R} is called } \mathcal{K}\mathcal{S}, \text{ if } \mathcal{K}(\mathcal{R}) \subseteq \mathcal{I}(\mathcal{R}) [1]. A ring \mathcal{R} is called } \mathcal{I}\text{-regular ring [12], if } \sigma \in \sigma \mathcal{R} \sigma \text{ for all } \sigma \in \mathcal{I}(\mathcal{R}). \text{ Chen, [2] called a ring } \mathcal{R} \text{ weakly semi-commutative, if } \sigma b = 0 \text{ implies } \sigma \mathcal{R} b \subseteq \mathcal{K}(\mathcal{R}) \text{ for } \sigma, b \in \mathcal{R}.
2 S3F-ring

Following [12], a right \(\mathcal{R}\)-module \(M\) is called \(\mathfrak{I}\)-flat, if for any \(\sigma \in \mathfrak{I}(\mathcal{R})\), the map \(i_M \otimes i: M \otimes_{\mathcal{R}} \mathcal{R}\sigma \to M \otimes \mathcal{R}\) is monic.

Now we give the following definition:

Lemma 2.1: If \(I\) is a right ideal of \(\mathcal{R}\). Then \(\mathcal{R}/I\) is \(\mathfrak{I}\)-flat module iff \(\sigma = I \cap \mathcal{R}\sigma\), for every \(\sigma \in \mathfrak{I}(\mathcal{R})\).

Proof: It can be proved by same method as [10].

Definition 2.2: A ring \(\mathcal{R}\) is said to be right (left) S3F-ring, if every simple right (left) \(\mathcal{R}\)-module is \(\mathfrak{I}\)-flat.

Every right SF-ring is right S3F-ring, but the converse is not true.

Examples:
1. The rings \(\mathcal{Z}_p\) and \(\mathcal{Z}_{pq}\) where \(p\) and \(q\) are prime numbers are S3F-ring.
2. The ring of integer \(\mathcal{Z}\) is S3F-ring, but it is not SF-ring.

Proposition 2.3: Let \(\mathcal{R}\) be a right S3F-ring. Then \(\mathcal{R} = \mathcal{M} + \ell(\sigma)\), where \(\mathcal{M}\) is a maximal right ideal of \(\mathcal{R}\) and \(\sigma \in \mathfrak{I}(\mathcal{R})\).

Proof: Since \(\mathcal{R}\) be right S3F-ring, then \(\mathcal{R}/\mathcal{M}\) is \(\mathfrak{I}\)-flat ring. Thus by (Lemma 2.1), for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \subseteq \mathcal{M}\), there exists \(b \in \mathcal{M}\) such that \(\sigma = b\sigma\). Hence \((1 - b) \in \ell(\sigma)\) and \(1 = b + (1 - b)\). Therefore \(\mathcal{R} = \mathcal{M} + \ell(\sigma)\).

Proposition 2.4: If \(\mathcal{R}\) is right S3F-ring. Then every left nonzero divisor of \(\mathcal{R}\) is invertible.

Proof: Let \(0 \neq \sigma \in \mathcal{R}\) be a nonzero divisor of \(\mathcal{R}\) and let \(\sigma\mathcal{R} \neq \mathcal{R}\). Choose a right maximal ideal \(K\) respect to \(\sigma\mathcal{R} \subseteq K\). Since \(\mathcal{R}/K\) is \(\mathfrak{I}\)-flat ring, then there exists \(b \in K\) such that \(\sigma = b\sigma\). Hence \((1 - b) \in \ell(\sigma)\) and \(1 = b + (1 - b)\), a contradiction. So \(\sigma\mathcal{R} = \mathcal{R}\) and hence it is a right invertible.

Theorem 2.5: If \(\mathcal{R}\) is right S3F-ring with \(\ell(\sigma) = 0\) for all \(\sigma \in \mathfrak{I}(\mathcal{R})\). Then \(\mathfrak{I}(\mathcal{R}) = 0\).

Proof: Since \(\mathcal{R}/\mathcal{M}\) is \(\mathfrak{I}\)-flat ring, for any maximal ideal \(\mathcal{M}\) of \(\mathcal{R}\), then for all \(\sigma \in \mathfrak{I}(\mathcal{R})\), there exists \(b \in \mathcal{M}\) such that \(\sigma = b\sigma\). Hence \((1 - b) \in \ell(\sigma) = 0\), implies that \(1 \in \mathcal{M}\) a contradiction. Thus we have \(\sigma = 0\). Therefore \(\mathfrak{I}(\mathcal{R}) = 0\).

Corollary 2.6: If \(\mathcal{R}\) is right S3F-ring with \(\ell(\sigma) = 0\) for all \(\sigma \in \mathfrak{I}(\mathcal{R})\). Then \(\mathcal{Y}(\mathcal{R}) \cap \mathfrak{I}(\mathcal{R}) = 0\).
From (Theorem 2.5) and (proposition 2.19, [2]) we get the corollary:

Corollary 2.7: If \mathcal{R} is right $\mathfrak{S}\mathfrak{F}$-ring and weakly semi commutative with $\ell(\sigma) = 0$ for all $\sigma \in \mathfrak{S}(\mathcal{R})$. Then \mathcal{R} is reduced.

Proposition 2.8: Let \mathcal{R} be a ring. Then $\mathcal{R}/\mathfrak{S}(\mathcal{R})$ is \mathfrak{S}-flat iff $\mathfrak{S}(\mathcal{R}) = 0$.

Proof: Assume $\mathcal{R}/\mathfrak{S}(\mathcal{R})$ is \mathfrak{S}-flat, then by (Lemma 2.1) for any $x \in \mathfrak{S}(\mathcal{R})$, there exists $y \in \mathfrak{S}(\mathcal{R})$ such that $x = xy$. Hence $(1 - y)x = 0$. Since $x \in \mathfrak{S}(\mathcal{R})$, $(1 - y)$ is invertible, and so $(1 - y)v = 1$, for some $v \in \mathcal{R}$. Hence $x = 0$, and so $\mathfrak{S}(\mathcal{R}) = 0$. The converse is trivial.

3 Regularity of right $\mathfrak{S}\mathfrak{F}$-ring

\mathcal{R} is called right (left) \mathfrak{S}-weakly regular ring [5], if for every $\sigma \in \mathfrak{S}(\mathcal{R})$, then $\sigma \in \sigma \mathcal{R} \sigma \mathcal{R}$ ($\sigma \in \mathcal{R} \sigma \mathcal{R} \sigma$).

Lemma 3.1: Let \mathcal{R} be a right nonsingular and $r(\sigma) \subseteq \ell(\sigma)$, for every $\sigma \in \mathcal{R}$. Then \mathcal{R} is reduced. [9]

Following [12], a ring \mathcal{R} is called a right (left) \mathfrak{S}PP-ring, if for any $\sigma \in \mathfrak{S}(\mathcal{R})$, $\sigma \mathcal{R}(\mathfrak{S} \mathcal{R})$ is projective.

Proposition 3.2: If \mathcal{R} be right \mathfrak{S}PP-ring with $r(\sigma) \subseteq \ell(\sigma)$, for every $\sigma \in \mathfrak{S}(\mathcal{R})$, then \mathcal{R} reduced ring.

Proof: Let $0 \neq \sigma \in Y(\mathcal{R})$ with $\sigma^2 = 0$. Since \mathcal{R} is right \mathfrak{S}PP-ring, $\sigma \mathcal{R}$ is projective. So $r(\sigma)$ is direct summand of \mathcal{R} as a right \mathcal{R}-module. But $\sigma \in Y(\mathcal{R})$, $r(\sigma)$ must be essential in \mathcal{R}, which is contradiction. Hence $Y(\mathcal{R}) = 0$. By (Lemma 3.1) we get \mathcal{R} reduced ring.

Theorem 3.3: If \mathcal{R} is right $\mathfrak{S}\mathfrak{F}$-ring, \mathfrak{S}PP-ring and $\ell(\sigma) \subseteq r(\sigma)$ for every $\sigma \in \mathfrak{S}(\mathcal{R})$, then \mathcal{R} is \mathfrak{S}-weakly regular ring.

Proof: We will show that $\mathcal{R} \sigma \mathcal{R} + r(\sigma) = \mathcal{R}$, for any $\sigma \in \mathfrak{S}(\mathcal{R})$. Suppose that $\mathcal{R}b \mathcal{R} + r(b) \neq \mathcal{R}$, for any $b \in \mathfrak{S}(\mathcal{R})$, then there exists a maximal right ideal \mathcal{M} containing $\mathcal{R}b \mathcal{R} + r(b)$. Since \mathcal{R} is right $\mathfrak{S}\mathfrak{F}$-ring, then as \mathcal{R}/\mathcal{M} is \mathfrak{S}-flat, and there exists $x \in \mathcal{M}$ such that $b = xb$ (Lemma 2.1). Hence $1 - x \in \ell(b) = r(b) \subseteq \mathcal{M}$, (Proposition 3.2), and $1 \in \mathcal{M}$. This is a contradiction. Therefore $\mathcal{R} \sigma \mathcal{R} + r(\sigma) = \mathcal{R}$. Hence we can write $d \sigma b + z = 1$, for some $z \in r(\sigma)$ and, $b \in \mathcal{R}$. Since $\sigma z = 0$, this gives $\sigma = \sigma d \sigma b$. Thus \mathcal{R} is right \mathfrak{S}-weakly regular ring.

While every \mathfrak{S}-regular ring is right and left $\mathfrak{S}\mathfrak{F}$-ring, we do not know whether the converse is true. However we have:
Proposition 3.4: Let \(\mathcal{R} \) be a ring such that the left annihilator of any element of \(\mathfrak{I}(\mathcal{R}) \) is also a right ideal. If \(\mathcal{R} \) is a right \(\mathfrak{S}\mathfrak{F} \)-ring, then \(\mathcal{R} \) is \(\mathfrak{I} \)-regular ring.

Proof: Let \(\mathcal{R} \) is right \(\mathfrak{S}\mathfrak{F} \)-ring and \(z \in \mathfrak{I}(\mathcal{R}) \). If \(K \) is left annihilator of \(z \) in \(\mathfrak{I}(\mathcal{R}) \), then \(K \) is also a right ideal by hypothesis. If \(\mathcal{M} \) is a maximal right ideal of \(\mathcal{R} \) containing \(z\mathcal{R} + K \), since \(\mathcal{R} \) is right \(\mathfrak{S}\mathfrak{F} \)-ring, then as \(\mathcal{R}/\mathcal{M} \) is \(\mathfrak{I} \)-flat, \(z = \sigma z \), for some \(\sigma \in \mathcal{M} \) (Lemma 2.1). Hence \((1 - \sigma) \in K \subset \mathcal{M} \), and \(1 \in \mathcal{M} \), a contradiction. Therefore \(z\mathcal{R} + K = \mathcal{R} \), and \(zb + k = 1 \), for some \(b \in \mathcal{R} \) and \(k \in K \). Since \(z = 0 \), this gives \(z = zbz \). Thus \(\mathcal{R} \) is \(\mathfrak{I} \)-regular ring.

Theorem 3.5: Let \(\mathcal{R} \) be a ring and \(\sigma\mathcal{R} \) is maximal right ideal of \(\mathcal{R} \) for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \). Then \(\mathcal{R} \) is \(\mathfrak{I} \)-regular ring iff \(\mathcal{R} \) is right \(\mathfrak{S}\mathfrak{F} \)-ring.

Proof: Assume that \(\mathcal{R} \) is right \(\mathfrak{S}\mathfrak{F} \)-ring and \(\sigma\mathcal{R} \) is maximal right ideal for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \). Then \(\mathcal{R}/\sigma\mathcal{R} \) is simple right \(\mathcal{R} \)-module. Thus \(\mathcal{R}/\sigma\mathcal{R} \) is \(\mathfrak{I} \)-flat, \(\sigma = x\sigma \), for some \(x \in \sigma\mathcal{R} \). Hence \(\sigma = x\sigma = \sigma b\sigma \), for some \(b \in \mathcal{R} \). Thus \(\mathcal{R} \) is \(\mathfrak{I} \)-regular ring. The converse is trivial.

Recall that a ring \(\mathcal{R} \) is called right (left) strongly \(\mathcal{Y} \)-regular ring [8], if for every element \(\sigma \in \mathcal{R} \), there exists \(b \in \mathcal{R} \) and \(1 \neq n \in \mathbb{Z}^+ \) such that \(\sigma = \sigma^2b^n (\sigma = b^n\sigma^2) \). A ring \(\mathcal{R} \) is called strongly \(\mathcal{Y} \)-regular ring if it is both right and left strongly \(\mathcal{Y} \)-regular ring. [8]

Theorem 3.6: Let \(\mathcal{R} \) be right \(\mathfrak{S}\mathfrak{F} \)-ring and \(\mathcal{R}\sigma = \mathcal{R}\sigma^2 \), for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \). Then \(\mathcal{R} \) is left strongly \(\mathcal{Y} \)-regular ring.

Proof: Since \(\mathcal{R} \) is right \(\mathfrak{S}\mathfrak{F} \)-ring, then \(\mathcal{R}/\mathcal{M} \) is \(\mathfrak{I} \)-flat and every \(\sigma \in \mathfrak{I}(\mathcal{R}) \subset \mathcal{M} \), there exists \(b \in \mathcal{M} \) such that \(\sigma = b\sigma = bb\sigma = b^2\sigma = \cdots = b^n\sigma \), \(n \in \mathbb{Z}^+ \). Thus \(\sigma = b^n\sigma \in \mathcal{R}\sigma = \mathcal{R}\sigma^2 \). Therefore \(\sigma = b^n\sigma^2 \) and so \(\mathcal{R} \) is left strongly \(\mathcal{Y} \)-regular ring.

Corollary 3.7: Let \(\mathcal{R} \) be reversible, right \(\mathfrak{S}\mathfrak{F} \)-ring and \(\mathcal{R}\sigma = \mathcal{R}\sigma^2 \), for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \). Then \(\mathcal{R} \) is strongly \(\mathcal{Y} \)-regular ring.

4 Some result on \(\mathfrak{N}\mathfrak{I} \) rings

Following [10], a ring \(\mathcal{R} \) is called right (left) \(\mathfrak{S}\mathfrak{N}\mathfrak{F} \)-rings, if every simple right (left) \(\mathcal{R} \)-module is \(\mathfrak{K} \)-flat. Every reduced ring is \(\mathfrak{K} \)-flat.

Proposition 4.1: If \(\mathcal{R} \) is \(\mathfrak{N}\mathfrak{I} \) right \(\mathfrak{S}\mathfrak{F} \)-ring and \(\ell(\sigma) \subseteq \mathfrak{r}(\sigma) \), for all \(\sigma \in \mathfrak{I}(\mathcal{R}) \). Then \(\mathcal{R} \) is reduced.

Proof: Let \(\mathcal{R} \) is not reduced, then there exists \(0 \neq \sigma \in \mathcal{R} \) such that \(\sigma^2 = 0 \). Since \(\sigma \neq 0 \), then there exists a maximal right ideal \(\mathcal{M} \) of \(\mathcal{R} \) containing \(\mathfrak{r}(\sigma) \). Since \(\mathcal{R} \)
is right S3F-ring, then \mathcal{R}/\mathcal{M} is \mathcal{I}-flat and by (Lemma 2.1), $\sigma = b\sigma$, for some $b \in \mathcal{M}$. Thus $(1 - b) \in \ell(\sigma) \subseteq r(\sigma) \subseteq \mathcal{M}$, and so $1 \in \mathcal{M}$, a contradiction. Therefore $\sigma = 0$, and \mathcal{R} is reduced.

Now, we give relation between SRF-ring and S3F-ring:

Corollary 4.2: If \mathcal{R} is \mathcal{N} and S3F-ring and $\ell(\sigma) \subseteq r(\sigma)$, for all $\sigma \in \mathcal{I}(\mathcal{R})$. Then \mathcal{R} is SRF-ring.

Proof: From (Proposition 4.1).

Proposition 4.3: Let \mathcal{R} be \mathcal{N} ring and $\mathcal{I}(\mathcal{R}\sigma\mathcal{R}) = \mathcal{N}(\mathcal{R}\sigma\mathcal{R})$, for every $\sigma \in \mathcal{I}(\mathcal{R})$. Then \mathcal{R} is right S3F-ring iff \mathcal{R} is right SRF-ring.

Proof: Since \mathcal{R} be \mathcal{N} ring, then $\mathcal{N}(\mathcal{R}) \subseteq \mathcal{I}(\mathcal{R})$. Now we show that $\mathcal{I}(\mathcal{R}) \subseteq \mathcal{N}(\mathcal{R})$. If $\mathcal{I}(\mathcal{R}) \subseteq \mathcal{N}(\mathcal{R})$. Then $\mathcal{I}(\mathcal{R}\mathcal{R}) = \mathcal{N}(\mathcal{R}\mathcal{R})$ by the hypothesis. Since $b \in \mathcal{R}\mathcal{R}$ and $\in \mathcal{I}(\mathcal{R})$, then $b \in \mathcal{I}(\mathcal{R}) \cap (\mathcal{R}b\mathcal{R}) = \mathcal{I}(\mathcal{R}b\mathcal{R})$, and so $b \in \mathcal{I}(\mathcal{R}b\mathcal{R}) = \mathcal{N}(\mathcal{R}) \cap (\mathcal{R}b\mathcal{R})$. Thus $b \in \mathcal{N}(\mathcal{R})$ and $\mathcal{N}(\mathcal{R}) = \mathcal{I}(\mathcal{R})$. Therefore \mathcal{R} is right S3F-ring iff \mathcal{R} is right SRF-ring.

Theorem 4.4: Let \mathcal{R} be \mathcal{N} ring and $\ell(\sigma) \subseteq r(\sigma)$, for all $\sigma \in \mathcal{I}(\mathcal{R})$, whose every simple singular right \mathcal{R}-module is \mathcal{I}-flat. Then $\mathcal{Y}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) = 0$.

Proof: If $\mathcal{Y}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) \neq 0$, then there exists $0 \neq b \in \mathcal{Y}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R})$, such that $b^2 = 0$. We claim that $\mathcal{R}b\mathcal{R} + r(\mathcal{b}) = \mathcal{R}$. Otherwise there exists a maximal essential right ideal \mathcal{M} of \mathcal{R} containing $\mathcal{R}b\mathcal{R} + r(\mathcal{b})$. So \mathcal{M}/\mathcal{M} simple singular right \mathcal{R}-module, and then it is right \mathcal{I}-flat. Since \mathcal{R} is \mathcal{N} ring then $b \in \mathcal{I}(\mathcal{R})$ and $b = xb$ for some $x \in \mathcal{M}$. Since $(1 - b) \in \ell(x) \subseteq r(x) \subseteq \mathcal{M}$, then $1 \in \mathcal{M}$, which is a contradiction. Therefore $1 \in \mathcal{M}$, \mathcal{I}-flat, which is a contradiction. We claim that $\mathcal{Y}(\mathcal{R}) \cap \mathcal{Z}(\mathcal{R}) = 0$.

Acknowledgments: The authors are very grateful to the university of Mosul College of Computer Science and Mathematics for their provided facilities, which helped to improve the quality of this work.

References

Received: December 24, 2019; Published: January 24, 2020