Inertial Algorithm for J-Equilibrium Problem in Banach Spaces

Jialu Gao and Wen-Yue Fu

College of Statistics and Mathematics
Yunnan University of Finance and Economics
Kunming, 650221, China

Abstract

In this paper, a new iterative method to approximate a solution of J-equilibrium problem in the dual spaces of 2-uniformly convex and 2-uniformly smooth Banach spaces is introduced by combining proximal regularized technique with inertial method, and the strong convergence theorem of the iterative scheme presented is obtained.

Keywords: J-equilibrium problem; inertial algorithm; proximal regularized technique; convergence

1 Introduction

Equilibrium theory provides a powerful framework for studying many nonlinear problems arising from finance, economics, transportation, mechanics and optimization. Many practical problems in the fields of investment decision-making, traffic analysis and signal professing also can be attributed to the equilibrium problem [1–8]. Moreover, the equilibrium problem provides a unified form for minimization problem, saddle point problem, variational inequality problem, fixed point problems and complementarity problem.

Mathematically, the equilibrium problem (shortly, EP) in Banach space can be stated as follows: assume that E is a real Banach space, and C is a

1 Corresponding author
nonempty closed convex subset of E, f is a bifunction from $C \times C$ to R. EP is to find $x^* \in C$ such that

$$f(x^*, y) \geq 0, \quad \forall y \in C. \quad (1.1)$$

For approximating a solution of $EP(1.1)$, many iterative algorithms have been proposed, see [9–23] and the references therein. Among them, using proximity mapping to solve EP is a commonly used method in recent years. The proximity mapping $prox_{\lambda f}: C \times C \to R$ is defined by the following:

$$\arg\min \{\lambda f(x, y) + \frac{1}{2}\|y - x\|^2 : y \in C\}.$$ where $f : C \times C \to R$ is a function, and $f(x, \cdot)$ be proper, convex, lower semicontinuous and subdifferentiable for all $x \in C$. $\lambda > 0$ is a constant.

To speed up the convergence rate, Polyak [24] proposed an inertial extrapolation to act as an acceleration process to solve the problem of smooth convex minimization based on the heavy ball methods of a second-order time dynamic system. Recently, some researchers have constructed some faster iterative algorithms by using inertial extrapolation. These include inertial proximal point methods [25], inertial forward-backward methods [26], etc. But the following condition usually is needed to obtain convergence of the iteration scheme

$$\sum_{n=1}^{\infty} \theta_n \|x_n - x_{n-1}\|^2 < +\infty. \quad (1.2)$$

In 2008, inspired by the results of Ibaraki [32], and Takahashi et al [33], Takahashi and Zembayashi [34] introduced J-equilibrium problem (shortly, JEP) in the dual spaces of Banach spaces as follows:

Let E be a smooth Banach space with the dual space E^*, and C be a nonempty closed convex subset of E such that JC is a closed and convex subset of E^*, where J is the normalized duality mapping from E onto E^*. Let $f : JC \times JC \to R$ be a bifunction, find $\bar{x} \in C$ such that

$$f(J\bar{x}, Jy) \geq 0, \quad \forall y \in C. \quad (1.3)$$

The solutions set of JEP is defined by $JEP(f, C)$. At present, some methods have been proposed to solve JEP, see, for instance, [35–37].

In 2018, by combining proximal mapping with inertial algorithm, Dang [27] constructed an algorithm to solve a class of EP in Hilbert spaces, and obtained the strong convergence and linear convergence theorem without the condition (1.2).
In this paper, motivated by the above works and related literatures [28–31], combining the proximal regularized technique with inertial method, we introduce a new algorithm to solve JEP in 2-uniformly convex and 2-uniformly smooth Banach space, and obtain a strong convergence theorem without the condition (1.2).

2 Preliminaries

Let E be a real Banach space with the dual space E^*. A Banach space E is said to be strictly convex if $\|x+y\| \leq 1$ for all $x, y \in U = \{z \in E : \|z\| = 1\}$ with $x \neq y$. The modulus of convexity of E is defined by

$$\delta_E(\varepsilon) = \inf\{1 - \frac{\|x+y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x-y\| \geq \varepsilon\},$$

for all $\varepsilon \in [0, 2]$. E is said to be uniformly convex if $\delta_E(0) = 0$, and $\delta_E(\varepsilon) > 0$ for all $0 < \varepsilon < 2$.

Let $\rho_E : [0, \infty) \to [0, \infty)$ be the modulus of smoothness of E defined by

$$\rho_E(t) = \sup\{\|x+y\| + \|x-y\| - 1 : x \in U, \|y\| \leq t\}.$$

A Banach space E is said to be uniformly smooth if $\frac{\rho_E(t)}{t} \to 0$ as $t \to 0$.

Let p be a fixed real number with $p > 1$, then a Banach space E is called to be p-uniformly convex if there exists a constant $c > 0$ such that $\delta_E(\varepsilon) \geq c \varepsilon^p$. Let q be a fixed real number with $q > 1$, then a Banach space E is called to be q-uniformly smooth if there exists a constant $c > 0$ such that $\rho_E(t) \leq ct^q$ for all $t > 0$. It is well known that if E is p-uniformly convex, then E^* is q-uniformly smooth, if E is q-uniformly smooth, then E^* is p-uniformly convex.

The normalized duality mapping J from E into E^* is defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}, \forall x \in E.$$

If E is smooth, then J is single-valued. If E is reflexive, smooth and strictly convex Banach space and $J^* : E^* \to 2^E$ is the normalized duality mapping on E^*, then $J^{-1} = J^*$. If E is uniformly convex and uniformly smooth, then J is uniformly norm-to-norm continuous on bounded sets of E.

Let E be a smooth, strictly convex and reflexive Banach space, define the function $\phi : E \times E \to \mathbb{R}$ by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2,$$

for all $x, y \in E$, which is called Lyapunov functional and has the following properties.
\((\|x\| - \|y\|)^2 \leq \phi(x, y) \leq (\|x\| + \|y\|)^2. \)
(2.2)

\(\phi(x, y) = \phi(x, z) + \phi(z, y) + 2(x - z, Jz - Jy). \)
(2.3)

\[2(x - y, Jz - Jw) = \phi(x, w) + \phi(y, z) - \phi(x, z) - \phi(y, w). \]
(2.4)

It is worth noting that \(\phi(x, y) = 0 \iff x = y \) and if \(E \) is a real Hilbert space, then \(\phi(x, y) = \|x - y\|^2 \).

In [38], let \(E \) be a reflexive, strictly convex and smooth Banach space, they defined

\[\phi_s(x^*, y^*) = \|x^*\|^2 - 2\langle x^*, Jx \rangle \]

for \(x^*, y^* \in E^* \). As can be seen, this is a Lyapunov functional on \(E^* \), and easy to know \(\phi(x, y) = \phi_s(Jy, Jx) \).

If \(C \) is a convex subset of a Banach space \(E \), the normal cone for \(C \) at a point \(v \in C \) is \(N_C(v) = \{ x^* \in E^* : \langle v - y, x^* \rangle \geq 0, \forall y \in C \} \).

Suppose that \(E \) is a Banach space and let \(f : E \to (-\infty, +\infty] \) be a function. For \(x_0 \in Dom(f) \), the subdifferential of \(f \) at \(x_0 \) is defined as

\[\partial f(x_0) = \{ x^* \in E^* : f(x) \geq f(x_0) + \langle x^*, x - x_0 \rangle, \forall x \in E \}. \]

If \(\partial f(x_0) \neq \emptyset \), then \(f \) is subdifferentiable at \(x_0 \).

Lemma 2.1 [39] Let \(E \) be a 2-uniformly smooth Banach space with the best smoothness constants \(k > 0 \), then the following inequality holds:

1. \(\|x + y\|^2 \leq \|x\|^2 + 2\langle y, Jx \rangle + 2\|ky\|^2 \) for all \(x, y \in E \);
2. for any \(x, y \in E \), \(\|x + y\|^2 \geq \|x\|^2 + 2\langle y, Jx \rangle \).

Lemma 2.2 [40] Let \(E \) be a uniformly convex Banach space and \(r > 0 \), then, there exists a strictly increasing, continuous and convex function \(g : [0, 2r] \to [0, +\infty) \) such that \(g(0) = 0 \) and

\[\|\lambda x + (1 - \lambda)y\|^2 \leq \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)g(\|x - y\|) \]

for all \(\lambda \in [0, 1] \) and \(x, y \in B_r = \{ z \in E : \|z\| \leq r \} \).

Lemma 2.3 [40] Let \(E \) be a uniformly convex Banach space and \(r > 0 \), then, there exists a strictly increasing, continuous and convex function \(g : [0, 2r] \to [0, +\infty) \) such that \(g(0) = 0 \) and

\[g(\|x - y\|) \leq \phi(x, y) \]

for all \(\lambda \in [0, 1] \) and \(x, y \in B_r = \{ z \in E : \|z\| \leq r \} \).
Lemma 2.4 [41] Let C be a nonempty convex subset of a Banach space E and $f : C \to R \cup \{+\infty\}$ be a convex and subdifferentiable and lower semicontinuous function. If the function f satisfies the following condition:

Either $\text{int}(C) \neq \emptyset$ or f is continuous at a point in C,

then x^* is a solution to the following convex optimization problem $\min \{ f(x) : x \in C \}$ if and only if

$$0 \in \partial f(x^*) + N_C(x^*).$$

where $\partial f(x^*)$ is the subdifferential of f and $N_C(x^*)$ is the normal cone of C at x^*.

Lemma 2.5 [41] Let E be a reflexive Banach space. If $f : E \to R \cup \{+\infty\}$ and $g : E \to R \cup \{+\infty\}$ are nontrivial, convex and lower continuous functions and if $0 \in \text{Int}(\text{Dom} f - \text{Dom} g)$, then

$$\partial (f + g)(x) = \partial f(x) + \partial g(x).$$

Lemma 2.6 [41] Let E be a reflexive Banach space. If the convex function $f : E \to R \cup \{+\infty\}$ is continuous in the domain, then for every $x \in \text{Int}(\text{Dom} f)$, $\partial f(x)$ is nonempty and closed.

Lemma 2.7 [42] Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to R satisfying the following conditions:

(A1) $f(x^*, x^*) = 0$ for all $x^* \in JC$;

(A2) f is monotone, i.e. $f(x^*, y^*) + f(y^*, x^*) \leq 0$ for all $x^*, y^* \in JC$;

(A3) for all $x^*, y^*, z^* \in JC$, $\limsup_{t \to 0} f(tz^* + (1 - t)x^*, y^*) \leq f(x^*, y^*)$;

(A4) for all $x^* \in JC$, $f(x^*, \cdot)$ is convex and lower semicontinuous.

then for $r > 0$ and $x \in E$, there exists $z \in C$ such that

$$f(Jz, Jy) + \frac{1}{r} \langle z - x, Jy - Jz \rangle \geq 0, \forall y \in C.$$

Lemma 2.8 [43] Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space E such that JC is closed and convex. Let f be a bifunction from $JC \times JC$ to R satisfying (A1) – (A4). For $r > 0$ and $x \in E$, define a mapping $T_r : E \to C$ as follows:

$$T_r(x) = \{ z \in C : f(Jz, Jy) + \frac{1}{r} \langle z - x, Jy - Jz \rangle \geq 0, \forall y \in C \}.$$

Then the following statements hold:
(i) T_r is single-valued;
(ii) for all $x, y \in E$, $\langle T_r x - T_r y, J_T r x - J_T r y \rangle \leq \langle x - y, J_T r x - J_T r y \rangle$;
(iii) $F(T_r) = JEP(f, C)$;
(iv) $JEP(f, C)$ is closed and convex.

Zeynab Jouymandi et al [44] introduced the following J-auxiliary equilibrium problem (shortly, $JAUEP$):

\[
\text{find } u \in C \text{ such that } \rho f(Ju, Jy) + L(Jy, Ju) \geq 0, \quad \forall y \in C.
\]

where $\rho > 0$ is a regularization parameter and $L : JC \times JC \to \mathbb{R}$ is a nonnegative differentiable convex bifunction on JC with respect to the first argument, for any fixed $u \in C$, such that (i) $L(Ju, J\cdot) = 0$, $\nabla_1 L(Ju, J\cdot) = 0$ where $\nabla_1 L(Ju, J\cdot) = \text{gradient of } L(\cdot, Ju)$ at Ju.

Lemma 2.9 [44] Suppose that C is a nonempty subset of a reflexive and smooth Banach space E, JC is a nonempty and convex subset of E^* and $f : JC \times JC \to \mathbb{R}$ is an equilibrium bifunction and let $u \in C$. Suppose that $f(Ju, \cdot) : JC \to \mathbb{R}$ is subdifferentiable and convex on JC. Let $L : JC \times JC \to R_+$ be a differentiable convex function on JC with respect to first argument such that (i) $L(Ju, Ju) = 0$ and (ii) $\nabla_1 L(Ju, Ju) = 0$. Then, $u \in C$ is a solution to JEP if u is a solution to $JAUEP$.

Proposition 2.10 [45] Let E be p-uniformly convex Banach space, $p \geq 1$, then the normal duality mapping J_p of E is the subdifferential of the function $\frac{1}{p} \| \cdot \|^p$.

Proposition 2.11 [46] Let E be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be two sequences of E. If $\phi(x_n, y_n) \to 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $\|x_n - y_n\| \to 0$.

3 Main results

In this section, we assume that bifunction $f : JC \times JC \to \mathbb{R}$ satisfies the following conditions, where C is a nonempty convex and closed subset of 2-uniformly convex and 2-uniformly smooth Banach space E with smoothness coefficient k.

(a) $f(x^*, x^*) = 0$ for all $x^* \in JC$;
(b) f is strongly pseudomonotone on JC, i.e.

\[
f(x^*, y^*) \geq 0 \Rightarrow f(y^*, x^*) \leq -\gamma \phi_s(x^*, y^*), \forall x^*, y^* \in JC;
\]
(c) for all \(x^*, y^*, z^* \in JC \), \(\limsup_{t \to 0} f(tz^* + (1-t)x^*, y^*) \leq f(x^*, y^*) \);

(d) \(f(x^*, \cdot) \) is convex, lower semicontinuous and subdifferentiable on \(JC \) for every \(x^* \in JC \);

(e) \(f \) satisfies \(\phi_\ast \)-Lipschitz-type condition: \(\exists c_1, c_2 > 0 \), such that for every \(x^*, y^*, z^* \in JC \),

\[
f(x^*, y^*) + f(y^*, z^*) \geq f(x^*, z^*) - c_1 \phi_\ast(y^*, x^*) - c_2 \phi_\ast(z^*, y^*).
\]

(f) \(f \) is jointly weak* continuous on \(JC \times JC \), i.e., if \(\{ x^*_n \} \) and \(\{ y^*_n \} \) are two sequences in \(JC \) converging to \(x^* \in JC \) and \(y^* \in JC \) in weak* topology, respectively, then \(f(x^*_n, y^*_n) \to f(x^*, y^*) \).

It is known that if \(f \) satisfies the conditions (a)-(d), then \(JEP(f, C) \) is closed and convex.

Theorem 3.1 Suppose that \(C \) is a nonempty closed convex subset of a 2-uniformly convex and 2-uniformly smooth Banach space \(E \). \(JC \) is a nonempty and convex subset of \(E^\ast \). Assume that \(f : JC \times JC \to R \) is a bifunction which satisfies the conditions (a)-(f) and \(JEP(f, C) \neq \emptyset \). \(c_1, c_2 \) are \(\phi_\ast \)-Lipschitz-type constants of \(f \), \(\gamma \) is strongly pseudomonotone constant of \(f \). Choose \(x_0, x_1 \in C \) and \(\{ \lambda_n \} \subset (0, 1], \{ \theta_n \} \subset [0, 1] \), define the following algorithm:

\[
\begin{align*}
\omega_n &= x_n + \theta_n(x_n - x_{n-1}), \\
Jx_{n+1} &= \arg\min_{y \in C} \{ \lambda_n f(J\omega_n, Jy) + \frac{1}{2} \phi_\ast(Jy, J\omega_n) \}.
\end{align*}
\]

If the following conditions hold:

1. \(\gamma > 2c_2, k \in (0, \frac{\sqrt{2}}{2}) \);
2. \(0 < \lambda_n < \min\{ \frac{1}{2c_1}, \frac{1}{2c_2} \} \);
3. \(\{ \theta_n \} \) is non-decreasing and \(\theta_n \in [0, \theta_\ast] \) for some \(\theta_\ast \in [0, \frac{\sqrt{13-3}}{2}) \).

Then the sequence \(\{ x_n \} \) converges strongly to \(x^* \in JEP(f, C) \).

Proof: By the condition (d) and Lemma 2.4, 2.5 and 2.6, we have

\[
Jx_{n+1} = \arg\min_{y \in C} \{ \lambda_n f(J\omega_n, Jy) + \frac{1}{2} \phi_\ast(Jy, J\omega_n) \}
\]

\[
\iff 0 \in \lambda_n \partial_2 f(J\omega_n, Jx_{n+1}) + \frac{1}{2} \nabla_1 \phi_\ast(Jx_{n+1}, J\omega_n) + NJC(Jx_{n+1}).
\]

Using Proposition 2.10 and \(J^* = J^{-1} \), we derive that

\[
\frac{1}{2} \nabla_1 \phi_\ast(Jx_{n+1}, J\omega_n) = x_{n+1} - \omega_n.
\]

Then for \(\omega \in \partial_2 f(J\omega_n, Jx_{n+1}) \) and \(\varpi \in NJC(Jx_{n+1}) \), we have

\[
0 = \lambda_n \omega + x_{n+1} - \omega_n + \varpi.
\]

(3.2)
Therefore, from the definition of \(\partial_2 f(J\omega_n, Jx_{n+1}) \), we obtain for every \(y \in C \)
\[
\langle \omega, Jy - Jx_{n+1} \rangle \leq f(J\omega_n, Jy) - f(J\omega_n, Jx_{n+1}).
\]
Let \(y = y^* \in JEP(f, C) \) in the inequality above, we get
\[
\langle \omega, Jy^* - Jx_{n+1} \rangle \leq f(J\omega_n, Jy^*) - f(J\omega_n, Jx_{n+1}). \tag{3.3}
\]
Use the definition of \(NC(Jx_{n+1}) \), we know
\[
\langle \omega, Jx_{n+1} - Jy \rangle \leq 0. \tag{3.4}
\]
By equality (3.2), we have
\[
\lambda_n \langle \omega, Jx_{n+1} - Jy \rangle \leq \langle x_{n+1} - \omega_n, Jx_{n+1} - Jy \rangle.
\]
It follows from (3.4) that \(\lambda_n \langle \omega, Jx_{n+1} - Jy \rangle + \langle x_{n+1} - \omega_n, Jx_{n+1} - Jy \rangle \leq 0. \)
So we have
\[
\lambda_n \langle \omega, Jx_{n+1} - Jy \rangle \leq \langle x_{n+1} - \omega_n, Jy - Jx_{n+1} \rangle, \tag{3.5}
\]
for all \(y \in C \). Setting \(y = y^* \) in inequality (3.5), we get
\[
\langle x_{n+1} - \omega_n, Jy^* - Jx_{n+1} \rangle \geq \lambda_n \langle \omega, Jx_{n+1} - Jy^* \rangle.
\]
From (3.3), it is easy to see
\[
\langle x_{n+1} - \omega_n, Jy^* - Jx_{n+1} \rangle \geq \lambda_n \{ f(J\omega_n, Jx_{n+1}) - f(J\omega_n, Jy^*) \},
\]
i.e.
\[
\langle \omega - x_{n+1}, Jy^* - Jx_{n+1} \rangle \leq \lambda_n \{ f(J\omega_n, Jy^*) - f(J\omega_n, Jx_{n+1}) \}.
\]
Since \(f \) satisfies \(\phi_\star \)-Lipschitz-type condition, we have
\[
\langle \omega - x_{n+1}, Jy^* - Jx_{n+1} \rangle \leq \lambda_n \{ f(Jx_{n+1}, Jy^*) + c_1 \phi_\star(Jx_{n+1}, J\omega_n) + c_2 \phi_\star(Jy^*, Jx_{n+1}) \}. \tag{3.6}
\]
Because \(y^* \) is a solution of \(JEP \), then \(f(Jy^*, Jx_{n+1}) \geq 0. \) And owing to \(f \) is strongly pseudomonotone on \(JC \), we know \(f(Jx_{n+1}, Jy^*) \leq -\gamma \phi_\star(Jy^*, Jx_{n+1}) \).
Substituting this inequality into (3.6), we obtain
\[
\langle \omega - x_{n+1}, Jy^* - Jx_{n+1} \rangle \leq -\lambda_n \gamma \phi_\star(Jy^*, Jx_{n+1}) + \lambda_n c_1 \phi_\star(Jx_{n+1}, J\omega_n) + \lambda_n c_2 \phi_\star(Jy^*, Jx_{n+1}). \tag{3.7}
\]
Then we have
\[
2\langle \omega_n - x_{n+1}, Jy^* - Jx_{n+1} \rangle \leq -2\lambda_n \gamma \phi_*(Jy^*, Jx_{n+1}) + 2\lambda_n c_1 \phi_*(Jx_{n+1}, J\omega_n) + 2\lambda_n c_2 \phi_*(Jy^*, Jx_{n+1}).
\]

From equation (2.3) and the relationship between \(\phi \) and \(\phi_* \), we obtain that
\[
\phi(\omega_n, x_{n+1}) + \phi(x_{n+1}, y^*) - \phi(\omega_n, y^*) \leq -2\lambda_n \gamma \phi(x_{n+1}, y^*) + 2\lambda_n c_1 \phi(\omega_n, x_{n+1}) + 2\lambda_n c_2 \phi(x_{n+1}, y^*).
\]

Organizing the inequality above, we have
\[
(1 - 2\lambda_n c_2 + 2\lambda_n \gamma)\phi(x_{n+1}, y^*) \leq \phi(\omega_n, y^*) - (1 - 2\lambda_n c_1)\phi(\omega_n, x_{n+1}).
\]

It follows from the definition of \(\phi \) and Lemma 2.2 and Lemma 2.3 that
\[
\phi(\omega_n, y^*) = \|\omega_n\|^2 - 2\langle \omega_n, Jy^* \rangle + \|y^*\|^2 \\
= \|(1 + \theta_n)x_n - \theta_n x_{n-1}\|^2 - 2\langle \omega_n, Jy^* \rangle + \|y^*\|^2 \\
\leq (1 + \theta_n)\|x_n\|^2 - \theta_n\|x_{n-1}\|^2 + \theta_n(1 + \theta_n)\phi(x_{n-1}, x_n) \\
- 2(1 + \theta_n)\langle x_n, Jy^* \rangle + 2\theta_n\langle x_{n-1}, Jy^* \rangle + (1 + \theta_n)\|y^*\|^2 - \theta_n\|y^*\|^2 \\
\leq (1 + \theta_n)\phi(x_n, y^*) - \theta_n\phi(x_{n-1}, y^*) + \theta_n(1 + \theta_n)\phi(x_{n-1}, x_n),
\]

and from Lemma 2.1 and condition (1)
\[
-\phi(\omega_n, x_{n+1}) = -\|\omega_n\|^2 + 2\langle \omega_n, Jx_{n+1} \rangle - \|x_{n+1}\|^2 \\
= -\|x_n + \theta_n(x_n - x_{n-1})\|^2 + 2\langle x_n + \theta_n(x_n - x_{n-1}, Jx_{n+1} \rangle - \|x_{n+1}\|^2 \\
\leq -\|x_n\|^2 - 2\theta_n\langle x_n - x_{n-1}, Jx_n \rangle + 2\langle x_n, Jx_{n+1} \rangle \\
+ 2\theta_n\langle x_n - x_{n-1}, Jx_{n+1} \rangle - \|x_{n+1}\|^2 \\
\leq -\phi(x_n, x_{n+1}) + 2\theta_n\langle x_n - x_{n-1}, Jx_{n+1} - Jx_n \rangle \\
\leq -\phi(x_n, x_{n+1}) + 2\theta_n\|x_n - x_{n-1}\|^2 + \|Jx_n - Jx_{n+1}\|^2 \\
\leq -\phi(x_n, x_{n+1}) + \theta_n\|x_n - x_{n-1}\|^2 + \|x_n\|\|x_n - x_{n-1}\|^2 \\
+ \theta_n\|Jx_n\|^2 - 2\theta_n\langle Jx_{n+1}, x_n \rangle + \|Jx_{n+1}\|^2 \\
\leq -\phi(x_n, x_{n+1}) + \theta_n\phi(x_n, x_{n+1}) + \theta_n\phi(x_{n-1}, x_n) \\
\leq -(1 - \theta_n)\phi(x_n, x_{n+1}) + \theta_n\phi(x_{n-1}, x_n).
\]

Combining inequalities (3.8), (3.9) and (3.10), we get
\[
(1 - 2\lambda_n c_2 + 2\lambda_n \gamma)\phi(x_{n+1}, y^*) \leq (1 + \theta_n)\phi(x_n, y^*) - \theta_n\phi(x_{n-1}, y^*) \\
+ N_n\phi(x_{n-1}, x_n) - M_n\phi(x_n, x_{n+1}).
\]
where \(M_n = (1 - 2\lambda_n c_1)(1 - \theta_n) \), \(N_n = \theta_n(2 + \theta_n - 2\lambda_n c_1) \). Since \(\theta_* \in [0, \sqrt{\frac{3}{2}} - 3) \), we have

\[
0 \leq \frac{\theta_*(2 + \theta_*)}{1 - \theta_*} < 1.
\]

Let \(\sigma \) be fixed in \((\frac{\theta_*(2 + \theta_*)}{1 - \theta_*}, 1) \), due to \(\lambda_n \to 0 \), then the existence of \(n_0 \geq 0 \) such that when \(n \geq n_0 \),

\[
1 - 2\lambda_n c_1 \geq \sigma. \tag{3.12}
\]

It follows from condition (1) and (3.11) that, for all \(n \geq n_0 \),

\[
\phi(x_{n+1}, y^*) \leq (1 - 2\lambda_n c_2 + 2\lambda_n \gamma)\phi(x_{n+1}, y^*) \\
\leq (1 + \theta_n)\phi(x_n, y^*) - \theta_n\phi(x_{n-1}, y^*) + N_n\phi(x_{n-1}, x_n) \\
- M_n\phi(x_n, x_{n+1}). \tag{3.13}
\]

Let \(\varphi_n = \phi(x_n, y^*) - \theta_n\phi(x_{n-1}, y^*) + N_n\phi(x_{n-1}, x_n) \), because \(\{\theta_n\} \) is non-decreasing and (3.13), then

\[
\varphi_{n+1} - \varphi_n = \phi(x_{n+1}, y^*) - \theta_{n+1}\phi(x_n, y^*) + N_{n+1}\phi(x_n, x_{n+1}) - \phi(x_n, y^*) \\
+ \theta_n\phi(x_{n-1}, y^*) - N_n\phi(x_{n-1}, x_n) \\
\leq \phi(x_{n+1}, y^*) - (1 + \theta_n)\phi(x_n, y^*) + N_{n+1}\phi(x_n, x_{n+1}) \\
+ \theta_n\phi(x_{n-1}, y^*) - N_n\phi(x_{n-1}, x_n) \\
\leq -M_n\phi(x_n, x_{n+1}) + N_{n+1}\phi(x_n, x_{n+1}) \\
\leq -(M_n - N_{n+1})\phi(x_n, x_{n+1}). \tag{3.14}
\]

By (3.12), condition (2) and \(\sigma \in (\frac{\theta_*(2 + \theta_*)}{1 - \theta_*}, 1) \), we obtain \(0 < 1 - 2\lambda_{n+1} c_1 < 1 \), and

\[
M_n - N_{n+1} = (1 - 2\lambda_n c_1)(1 - \theta_n) - \theta_{n+1}(2 + \theta_{n+1} - 2\lambda_{n+1} c_1) \\
\geq (1 - \theta_n)\sigma - \theta_{n+1}(2 + \theta_{n+1}) \\
\geq (1 - \theta_{n+1})\sigma - \theta_{n+1}(2 + \theta_{n+1}) \\
\geq (1 - \theta_*)\sigma - \theta_*(2 + \theta_*) \\
= K > 0.
\]

From (3.14), we get

\[
\varphi_{n+1} - \varphi_n \leq -K\phi(x_n, x_{n+1}) \leq 0. \tag{3.15}
\]

This implies that \(\{\varphi_n\}_{n=n_0}^{+\infty} \) is non-increasing. From the definition of \(\varphi_n \), we have

\[
\varphi_n \geq \phi(x_n, y^*) - \theta_n\phi(x_{n-1}, y^*).
\]
Inertial algorithm for J-equilibrium problem in Banach spaces

So for all $n \geq n_0$, we have $\phi(x_n, y^*) \leq \varphi_n + \theta_n \phi(x_{n-1}, y^*) \leq \varphi_{n_0} + \theta_* \phi(x_{n-1}, y^*)$. Thus, we get the follows through induction

$$\phi(x_n, y^*) \leq \varphi_{n_0}(1 + \theta_* + \cdots + \theta_*^{n-n_0}) + \theta_*^{n-n_0} \phi(x_{n_0}, y^*), \forall n \geq n_0.$$

Then we have

$$\phi(x_n, y^*) \leq \frac{\varphi_{n_0}}{1 - \theta_*} + \theta_*^{n-n_0} \phi(x_{n_0}, y^*). \quad (3.16)$$

Again from the definition of φ_n, we obtain $\varphi_{n+1} \geq -\theta_{n+1} \phi(x_n, y^*)$. So

$$-\varphi_{n+1} \leq \theta_{n+1} \phi(x_n, y^*) \leq \theta_* \phi(x_n, y^*) \leq \frac{\theta_* \varphi_{n_0}}{1 - \theta_*} + \theta_*^{n-n_0+1} \phi(x_{n_0}, y^*). \quad (3.17)$$

Hence, it follows from (3.15), that for all $N \geq n_0$

$$k \sum_{n=n_0}^{N} \phi(x_n, x_{n+1}) \leq \varphi_{n_0} - \varphi_{N+1} \leq \frac{\varphi_{n_0}}{1 - \theta_*} + \theta_*^{N-n_0+1} \phi(x_{n_0}, y^*).$$

As $N \to \infty$ in the inequality above and by condition (3), we obtained

$$\sum_{n=n_0}^{\infty} \phi(x_n, x_{n+1}) < +\infty, \quad (3.18)$$

this implies that

$$\lim_{n \to \infty} \phi(x_n, x_{n+1}) = 0. \quad (3.19)$$

From Lemma 2.11, we know

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \quad (3.20)$$

By (3.20), we get for all $m \in N$,

$$\|x_{n+m} - x_n\| \leq \|x_{n+m} - x_{n+m-1}\| + \|x_{n+m-1} - x_n\| \leq \|x_{n+m} - x_{n+m-1}\| + \|x_{n+m-1} - x_{n+m-2}\| + \|x_{n+m-2} - x_n\| \leq \|x_{n+m} - x_{n+m-1}\| + \|x_{n+m-1} - x_{n+m-2}\| + \|x_{n+m-2} - x_{n+m-3}\| + \cdots + \|x_{n+1} - x_n\| \to 0. \quad (3.21)$$

So the sequence $\{x_n\}$ is a Cauchy sequence, then the limit of $\{x_n\}$ exists and implies that the limit of $\{\omega_n\}$ exists. Let $x_n \to x^*$, now we prove that $x^* \in JEP(f, C)$.

It follows from the definition of Jx_{n+1} that
\[\lambda_n f(Jx_{n+1}, Jx_n) + \frac{1}{2} \phi_*(Jx_{n+1}, Jx_n) \leq \lambda_n f(Jx_{n+1}, Jy) + \frac{1}{2} \phi_*(Jy, Jx_n), \]
(3.22)
for all $y \in C$. It follows from (3.1) that $\omega_n - x_n = \theta_n(x_n - x_{n-1})$, so from (3.20), we have $\lim_{n \to \infty} \|x_n - \omega_n\| = 0$. Further, we also have
\[\lim_{n \to \infty} \|x_{n+1} - \omega_n\| = 0. \]
(3.23)
By letting $n \to \infty$ in inequality (3.22), it follows from (3.23), condition (a) and (f) and uniformly norm-to-norm continuity of J that
\[0 \leq f(Jx^*, Jy) + \frac{1}{2} \phi_*(Jy, Jx^*), \]
for all $y \in C$, because of $0 < \lambda_n \leq 1$. Hence, letting $\frac{1}{2} \phi_*(Jy, Jx^*) = L(Jy, Jx^*)$, it follows from Lemma 2.9 that $x^* \in JEP(f, C)$. This proof os completed.

Corollary 3.2 Suppose that C is a nonempty closed convex subset of Hilbert space E. Assume that $f : C \times C \to R$ is a bifunction which satisfies the conditions (a)-(f) and $EP(f, C) \neq \emptyset$. c_1, c_2 are ϕ_*-Lipschitz-type constants of f, γ is strongly pseudomonotone constant of f. Choose $x_0, x_1 \in C$ and \{\lambda_n\} \subseteq (0, 1], \{\theta_n\} \subseteq [0, 1], define the following algorithm:
\[\begin{align*}
\omega_n &= x_n + \theta_n(x_n - x_{n-1}), \\
x_{n+1} &= \text{argmin}_{y \in C} \{\lambda_n f(\omega_n, y) + \frac{1}{2} \|\omega_n - y\|^2\}.
\end{align*} \]
(3.24)
If the following conditions hold:
1. $\gamma > 2c_2, k \in (0, \frac{\sqrt{2}}{2})$;
2. $0 \leq \lambda_n < \min\{\frac{1}{2c_1}, \frac{1}{2c_2}\}$;
3. \{\theta_n\} is non-decreasing and $\theta_n \in [0, \theta_*]$ for some $\theta_* \in [0, \frac{1}{3})$.
Then the sequence \{\lambda_n\} converges strongly to $x^* \in EP(f, C)$.

Remark: When E is a real Hilbert space, Theorem 3.1 is reduced to Theorem 4.1 in [27].

References

Inertial algorithm for J-equilibrium problem in Banach spaces

Inertial algorithm for J-equilibrium problem in Banach spaces

[34] Takahashi, W., Zembayashi, K., A Strong convergence theorem for the equilibrium problem with a bifunction defined on the dual space of a Banach space, *Proceeding of the 8th International Conference on Fixed

Received: February 21, 2020; Published: March 24, 2020