Generalization of Rodrigues’ Formula in Weyl Space

Nil Kofoğlu

Beykent University
Faculty of Science and Letters
Department of Mathematics
Ayazağa-Maslak, Istanbul, Turkey

Abstract
In this paper, a generalization of Rodrigues’s Formula in Weyl space is expressed.

Mathematics Subject Classification: 53B25

Keywords: Weyl space, intersector net, Rodrigues’ Formula

1 Introduction

A manifold with a conformal metric g_{ij} and a symmetric connection ∇_k satisfying the compatibility condition

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \quad (1)$$

is called a Weyl space that will be denoted by $W_n(g_{ij}, T_k)$. The vector field T_k is named the complementary vector field.

The prolonged derivative and prolonged covariant derivative of A are, respectively defined by ([1,5])

$$\dot{\partial}_k A = \partial_k A - pT_k A \quad (2)$$

and

$$\dot{\nabla}_k A = \nabla_k A - pT_k A \quad (3)$$

where A is a satellite of g_{ij} with weight $\{p\}$.
2 Generalization of Rodrigues’ Formula

Let us take a point on the line \(v \). Let us denote its coordinates by \(x^a + tv^a \) where \(v^a = t^i x^a_i + rn^a \) and \(g_{ab} v^a v^b = 1 \). Let \(x^a + tv^a \) describe a curve which is tangent to the line \(v \). Then the prolonged covariant derivative of \(x^a + tv^a \) in the direction of \(v^k \), which is tangent vector field of a curve \(C \) at a point on \(W_2 \), satisfies the following condition:

\[
v^a + v^k (\hat{\nabla}_k t) v^a + tv^k \hat{\nabla}_k v^a = m v^a \quad (a = 1, 2, 3; k = 1, 2)
\]

(4)

where \(m \) is to be determined.

Multiplying (4) by \(g_{ab} v^b \), we get

\[
g_{ab} v^a v^b + v^k \hat{\nabla}_k t + tg_{ab}(v^k \hat{\nabla}_k v^a)v^b = m \quad (b = 1, 2, 3)
\]

(5)
or

\[
g_{ab} v^a v^b + v^k \hat{\nabla}_k t = m
\]

(6)

where \(g_{ab} v^a v^b = 1 \) and \((v^k \hat{\nabla}_k v^a)v^b = 0 \).

Using (6) in (4), we have

\[
v^a + v^k (\hat{\nabla}_k t) v^a + tv^k \hat{\nabla}_k v^a = (g_{ab} v^c v^b + v^k \hat{\nabla}_k t) v^a \quad (c = 1, 2, 3)
\]

(7)
or

\[
v^k (x^a_k + t \hat{\nabla}_k v^a - g_{ab} x^c_k v^b v^a) = 0
\]

(8)

where \(v^c = v^k x^c_k \) [7].

We know that:

1) \(g_{ab} v^a x^b_i = g_{ab}(t^i x^a_j + rn^a)x^b_i = g_{ij} t^i = t_i \quad (i, j = 1, 2) \)

(9)

2) \[
g_{ab}(\hat{\nabla}_k v^a)(\hat{\nabla}_l v^b) = g_{ab}(D^i_k x^a_i + D^a_k n^a)(D^b_l x^b_l + D^b_l n^b)
\]
\[
= g_{ij} D^i_k D^j_l + D^a_k D^a_l
\]
\[
= D^i_k D^j_l (g_{ij} + h_i h_l)
\]
\[
= G_{kl} \quad (l = 1, 2)
\]

(10)

where \(D_k = -h_i D^i_k \) [7].

3) \[
g_{ab}(\hat{\nabla}_k v^a)x^b_j = g_{ab}(D^i_k x^a_i + D^a_k n^a)x^b_j
\]
\[
= g_{ij} D^i_k
\]
\[
= D_{jk} \quad [4].
\]

(11)
Multiplying (8) by $g_{ad}(\hat{\nabla}_lv^d)$ ($d = 1, 2, 3$) and using (9), (10) and (11), we obtain

$$v^k_1(D_{kl} + tG_{kl}) = 0. \tag{12}$$

Eliminating the parameter t in (12), we have

$$(D_{11}G_{12} - D_{12}G_{11})v^1_1v^1_1 + (D_{11}G_{22} - D_{22}G_{11})v^1_1v^2_1 + (D_{21}G_{22} - D_{22}G_{21})v^2_1v^2_1 = 0 \tag{13}$$

or implicitly

$$\varepsilon^{jl}D_{ij}G_{kl}v^i_1v^k_1 = 0 \tag{14}$$

or

$$e^{jl}D_{ij}G_{kl}v^i_1v^k_1 = 0 \tag{15}$$

where $\varepsilon^{jl} = e^{jl}/\sqrt{g}$, $e^{12} = 1$, $e^{21} = -1$, and $e^{11} = e^{22} = 0$.

The curves satisfying the equation (15) on W_2 constitute the net of curves. This net is named as the intersector net.

Using (10) and (11), we get from (15)

$$e^{jl}g_{hi}D^h_jD^m_k(g_{ms} + h_mh_s)v^i_1v^k_1 = 0 \quad (m, s = 1, 2) \tag{16}$$

or

$$(De^{hs}g_{hi}g_{ms}D^m_k - De^{hs}g_{hi}D_k^sg^qh^q)v^i_1v^k_1 = 0 \quad (q = 1, 2) \tag{17}$$

where $e^{jl}D^h_sD^i_l = De^{hs}$, $D = |D^h_j|$ and $-D_k = D^m_kh_m$ or

$$(Dge_{im}D^m_k - Dge_{iq}D_k^q)v^i_1v^k_1 = 0 \tag{18}$$

where $e^{hs}g_{hi}g_{ms} = ge_{im} \quad [7]$, $g = |g_{ij}|$.

Taking m instead of q in the second term of (18), we get

$$e_{im}(D^m_k - D_k^mh^m)v^i_1v^k_1 = 0 \tag{19}$$

where D and g are nonvanishing.

(19) is equivalent to (15).

On the other hand, the prolonged covariant derivative of Y: $v^a = t^ix_i^a + rn^a$ in the direction of v^k is

$$v^k_1\hat{\nabla}_kv^a = v^k_1(\hat{\nabla}_kt^i - r\omega_{kl}g^{il})x_i^a + v^k_1(t^i\omega_{ik} + \hat{\nabla}_k r)n^a \tag{20}$$
\[
\psi^k \nabla_k \psi^a = \psi^k (\nabla_k t^i - r \omega_{kl} g^{di} - t^j \omega_{jk} \frac{t^i}{r} - \frac{1}{r} t^i \nabla_k r)x_i^a + \psi^k (\frac{t^i}{r} \omega_{ik} + \frac{1}{r} \nabla_k r) \psi^a
\]
(21)

where \(n^a = \frac{1}{r} (t^a - t^i x_i^a) \).

Let us denote the tangential component of (21) by \(-DY\):

\[
DY = \psi^k (-\nabla_k t^i + r \omega_{kl} g^{di} + t^j \omega_{jk} \frac{t^i}{r} + \frac{1}{r} t^i \nabla_k r)x_i^a.
\]
(22)

\(DY \) is tangent to \(C \) if and only if the following equation is satisfied for some scalar \(q \):

\[
\psi^k (\nabla_k t^i - \omega_{kl} g^{di} - t^j \omega_{jk} \frac{t^i}{r} - \frac{1}{r} t^i \nabla_k r)x_i^a = qx^a k
\]
(23)

Multiplying (23) by \(g_{ab} x^b_m \), we have

\[
\psi^k (\nabla_k t^m - r \omega_{km} - t^j \omega_{jk} \frac{t^m}{r} - \frac{1}{r} t^m \nabla_k r) = q g_{km} \psi^k
\]
(24)

where \(g_{ab} x^b_i x^a_m = g_{im}, \quad g_{im} g^{di} = \delta^i_m \) and \(g_{im} t^i = t_m \).

Multiplying (24) by \(g^{ms} \), we get

\[
g^{ms} \psi^k (\nabla_k t^m - r \omega_{km} - t^j \omega_{jk} \frac{t^m}{r} - \frac{1}{r} t^m \nabla_k r) = q \psi^s
\]
(25)

where \(g_{km} g^{ms} = \delta^s_k \).

Multiplying (25) by \(\varepsilon_{sh} \psi^h \), we obtain

\[
\varepsilon_{sh} g^{ms} \psi^k (\nabla_k t^m - r \omega_{km} - t^j \omega_{jk} \frac{t^m}{r} - \frac{1}{r} t^m \nabla_k r) \psi^h = 0
\]
(26)

where \(\varepsilon_{sh} \psi^s \psi^h = 0 \) (the directions coincide), or

\[
\varepsilon_{sh} \psi^k (\nabla_k t^s - r \omega_{km} g^{ms} - t^j \omega_{jk} \frac{t^s}{r} - \frac{1}{r} t^s \nabla_k r) \psi^h = 0
\]
(27)

or

\[
\varepsilon_{sh} \psi^k (D_k^s - h^s D_k) \psi^h = 0
\]
(28)

where \(D_k^s = \nabla_k t^s - r \omega_{km} g^{ms} \), \(D_k = t^j \omega_{jk} + \nabla_k r \), \(h^s = t^s / r \).

(26) is equivalent to (28). From here, we have seen that \(C \) is a curve of the intersector net.

Let \(\kappa \) denote the magnitude (signed magnitude) of \(DY \) in the direction of \(v \) which is the tangent vector field of the curve \(C \) of the intersector net. Then, we have

\[
\kappa v^i = \psi^k (-\nabla_k t^i + r \omega_{kl} g^{di} + t^j \omega_{jk} \frac{t^i}{r} + \frac{1}{r} t^i \nabla_k r).
\]
(29)
Using (29) in (22), we have

\[DY + \kappa v^i x^a_i = DY + \kappa v^a = 0 \quad (30) \]

(30) is a generalization of Rodrigues’s formula.

Remark: Generalization of Rodrigues’ formula in \(E^3 \) was obtained by Pan [6].

If \(Z : v^a = n^a \), then \(v^k \nabla_k v^a = v^k \nabla_k n^a \). Using (20) and (23), we have

\[DZ = v^k \nabla_k n^a = -v^k \omega_{kl} g^{il} x^a_i \quad \text{and} \quad -v^k \omega_{kl} g^{il} x^a_i = q v^i x^a_i. \]

From here, we get \(v^k (w_{kl} - \kappa g_{kl}) = 0 \) where \(-\kappa = q \), \(\kappa = \omega_{ij} v^i v^j \) and \(\kappa \) is the normal curvature of \(\tilde{W}_2 \). This is the equation of lines of curvature [3] i.e. The net of lines of curvature is the intersector net of the normal congruence. Let \(\kappa \) denote the magnitude of \(DZ \) along a curve of the intersector net of \(Z \). Since \(v^k \omega_{kl} g^{il} = \kappa v^i \), we have \(DZ = \kappa v^a \) or \(DZ + \kappa v^a = 0 \) or \(v^k \nabla_k n^a + \kappa v^a = 0 \). This is a special case of (30).

Theorem 2.1 If the tangential component of the prolonged covariant derivative of a congruence along a curve \(C \) is tangent to the curve \(C \) then \(C \) is a curve of the intersector net of the congruence.

References

Received: May 12, 2019; Published: June 8, 2019