
International Mathematical Forum, Vol. 13, 2018, no. 10, 447 - 454
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/imf.2018.8845

Strong 2-Jordan Product Preserving Maps

on Operator Algebras

Miaomiao Wang and Xiaofei Qi∗

Department of Mathematics, Shanxi University
Taiyuan 030006, P. R. China
∗Corresponding author

Copyright c© 2018 Miaomiao Wang and Xiaofei Qi. This article is distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

Abstract

LetR be a ring having unit 1 and an idempotent element e1. Assume
that f : R → R is a surjective map. It is shown that, under some
mild conditions, f satisfies {f(a), f(e)}2 = {a, e}2 for all a ∈ R and
e ∈ {e1, 1−e1, 1} if and only if f(1) is in the center of R with f(1)3 = 1
and f(a) = f(1)a holds for all a ∈ R. As applications, such maps on
prime rings, standard operator algebras and von Neumann algebras are
characterized, respectively.
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1 Introduction

Let R be an associative ring and k a positive integer. Recall that the k-
commutator of elements a, b ∈ R is defined by [a, b]k = [[a, b]k−1, b] with
[a, b]0 = a and [a, b]1 = [a, b] = ab− ba (see [4]). Recall that a map f : R → R
is said to be strong k-commutativity preserving if [a, b]k = [f(a), f(b)]k for all
a, b ∈ R ([7]). Obviously, strong k-commutativity preserving maps are the
usual strong commutativity preserving maps if k = 1. For the case k = 1, see
[5, 8] and the references therein. For the case k ≥ 2, in [7], it is shown that a
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surjective map on a unital prime ring with characteristic not 2 and containing
a nontrivial idempotent is strong 2-commutativity preserving if and only if it
has the form a 7→ λa + h(a), where λ is an element in the extended centroid
of the ring satisfying λ3 = 1 and h is a map from the ring into its center.
With k increasing, the problem of characterizing strong k-commutativity pre-
serving maps becomes much more difficult. Let X be a complex Banach space
with dimX ≥ 2 and A be a standard operator algebra on X. Hou and Qi
in [1] proved that, if the range of a map f : A → A contains all operators
of rank ≤ 1, then f is strong k-commutativity preserving if and only if there
exist a functional h on A and a complex scalar λ with λk+1 = 1 such that
f(A) = λA+ h(A)I for all A ∈ A.

On the other hand, R is also a Jordan ring under Jordan product {a, b} =
ab+ ba. Jordan product is a kind of important products and had been studied
intensively by many authors. Motivated by the k-commutator, we can define
the k-Jordan product of a, b ∈ R by {a, b}k = {{a, b}k−1, b}1, where {a, b}0 = a
and {a, b}1 = {a, b} = ab + ba. In addition, f is called to strong k-Jordan
product preserving if {f(a), f(b)}k = {a, b}k for each a, b ∈ R (see [10]).

Thus, a natural problem is how to characterize strong k-Jordan product
preserving maps on rings or algebras. Assume thatR is a unital ring containing
a nontrivial idempotent and f : R → R is a surjective map. Wang and Qi
[10] showed that, under some mild conditions, f is strong k-Jordan product
preserving if and only if there exists λ ∈ Z(R) (the center of R) with λk+1 = 1
such that f(x) = λx holds for all x ∈ R. Taghavi, Kolivand and Rohi in
[11] proved that, if A is a unital algebra containing a nontrivial idempotent
e1, then a surjective map f : A → A satisfies {f(a), f(e)}1 = {a, e}1 for all
a ∈ A and e ∈ {e1, 1− e1} if and only if f(1) is in the center of A, f(1)2 = 1
and f(a) = f(1)a for all a ∈ A; in [12] gave a concrete form of strong 2-
Jordan product preserving surjective maps on standard operator algebras, and
particularly, showed that, if a surjective map Φ : M → M (here, M is a
properly infinite von Neumann algebra) satisfies {Φ(A),Φ(P )}2 = {A,P}2 for
all A ∈M and all idempotents P ∈M, then Φ(A) = Φ(I)A for all A ∈M.

The purpose of this paper is to consider strong 2-Jordan product preserv-
ing surjective maps on general rings. Assume that R is a unital ring with
an idempotent element e1 and f : R → R is a surjective map. It is shown
that, under some mild conditions, f satisfies {f(a), f(e)}2 = {a, e}2 for all
a ∈ R and e ∈ {e1, 1 − e1, 1} if and only if f(1) is in the center of R with
f(1)3 = 1 and f(a) = f(1)a holds for all a ∈ R (Theorem 2.1). As applica-
tions, such maps on prime rings, standard operator algebras and von Neumann
algebras are characterized, respectively (Corollaries 2.2-2.4), which generalize
the corresponding results in [10, 12].
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2 Main result and its proof

In this section, we will give the main result in this paper and its proof.

Theorem 2.1 Let R be a ring having unit 1 and an idempotent element
e1. Assume that the characteristic of R is not 2 and f : R → R is a surjective
map. If R satisfies aRe1 = {0} ⇒ a = 0 and aR(1− e1) = {0} ⇒ a = 0, then

{f(a), f(e)}2 = {a, e}2 (1)

holds for all a ∈ R and e ∈ {e1, 1 − e1, 1} if and only if f(1) ∈ Z(R), the
center of R, f(1)3 = 1 and f(a) = f(1)a holds for all a ∈ R.

For the convenience, write e1 = e and e2 = 1− e1. Then R can be written
as R = R11 +R12 +R21 +R22, where Rij = eiRej (i, j ∈ {1, 2}).

Now, we give the proof of Theorem 2.1.
Proof of Theorem 2.1. The “if” part is obvious. In the following, we

will prove the “only if” part by checking several claims.
Claim 1. f(0) = 0.
By the surjectivity of f , there exists some s ∈ R such that f(s) = −f(0).

Letting a = s and e = 1 in Eq.(1), we have

4s = {s, 1}2 = {f(s), f(1)}2
= f(s)f(1)2 + f(1)2f(s) + 2f(1)f(s)f(1)
= −f(0)f(1)2 − f(1)2f(0)− 2f(1)f(0)f(1)
= −{f(0), f(1)}2 = −{0, 1}2 = 0,

which means {s, 1}2 = 0. Since the characteristic of R is not 2, one gets s = 0.
That is, f(0) = −f(0). It follows from charR 6= 2 that f(0) = 0.

Claim 2. f is additive, i.e. f(a+ b) = f(a) + f(b) holds for all a, b ∈ R.
For any a, b ∈ R, by the surjectivity of f , there exists some element c ∈ R

such that f(c) = f(a+ b)− f(a)− f(b). Let i ∈ {1, 2}. Note that

cei + 2eicei + eic = {c, ei}2 = {f(c), f(ei)}2
= {f(a+ b)− f(a)− f(b), f(ei)}2
= {f(a+ b), f(ei)}2 − {f(a), f(ei)}2 − {f(b), f(ei)}2
= {(a+ b), ei}2 − {a, ei}2 − {b, ei}2 = 0.

This implies ejcei + eicej + 4eicei = 0 for i, j ∈ {1, 2}. As the characteristic
of R is not 2, we obtain c = 0. Thus f(c) = 0 by Claim 1, and so f(a + b) =
f(a) + f(b).

Claim 3. f(e)3 = e, f(ei)ej = ejf(ei) and f(1)ei = eif(1), i, j ∈ {1, 2}.
For e ∈ {1, e1, e2}, by taking a = e in Eq.(1), we have {f(e), f(e)}2 =

{e, e}2, which implies f(e)3 = e. Thus, for i 6= j ∈ {1, 2}, one gets

f(ei)ei = f(ei)f(ei)
3 = f(ei)

4 = f(ei)
3f(ei) = eif(ei),
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and so
f(ei)ej = f(ei)(1− ei) = (1− ei)f(ei) = ejf(ei).

Combining the above two equations and Claim 2 gives

f(1)ei = (f(ei) + f(ej))ei = eif(ei) + eif(ej) = eif(1), 1 ≤ i 6= j ≤ 2.

Claim 4. f(ei) ∈ Rii, i ∈ {1, 2}.
By letting a = e1 and e = e2 in Eq.(1), one can obtain

f(e1)f(e2)
2 + f(e2)

2f(e1) + 2f(e2)f(e1)f(e2) = 0.

Multiplying by f(e2)
2 from the left and the right in the above equation, re-

spectively, by Claim 3, one gets

f(e2)
2f(e1)f(e2)

2 + e2f(e2)f(e1) + 2e2f(e1)f(e2) = 0 (2)

and
e2f(e1)f(e2) + f(e2)

2f(e1)f(e2)
2 + 2e2f(e2)f(e1) = 0. (3)

Comparing Eq.(2) and Eq.(3) yields

e2f(e1)f(e2)− e2f(e2)f(e1) = 0. (4)

Similarly, one can show

e1f(e1)f(e2)− e1f(e2)f(e1) = 0. (5)

Combining Eqs.(4)-(5) gives f(e1)f(e2) = f(e2)f(e1), and so

f(1)f(ei) = (f(ei)+f(ej))f(ei) = f(ei)(f(ei)+f(ej)) = f(ei)f(1), i 6= j ∈ {1, 2}.

On the other hand, taking a = ei (i = 1, 2) and e = 1 in Eq.(1) gives

f(ei)f(1)2 + f(1)2f(ei) + 2f(1)f(ei)f(1) = 4ei.

It follows from charR 6= 2 that

f(1)2f(ei) = ei, i = 1, 2.

Multiplying by f(1) from the left in the above equation, and by Claim 3, one
achieves f(ei) = f(1)ei = eif(ei)ei ∈ Rii, i = 1, 2.

Claim 5. For any a ∈ R, we have f(ei)
2f(a)f(ej) = f(ei)f(a)f(ej)

2,
1 ≤ i 6= j ≤ 2.

For any a ∈ R, by Eq.(1), one has

f(a)f(e1)
2 + f(e1)

2f(a) + 2f(e1)f(a)f(e1) = ae1 + e1a+ 2e1ae1, (6)
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f(a)f(e2)
2 + f(e2)

2f(a) + 2f(e2)f(a)f(e2) = ae2 + e2a+ 2e2ae2 (7)

and
f(a)f(1)2 + f(1)2f(a) + 2f(1)f(a)f(1) = 4a. (8)

As e1 + e2 = 1, by Claims 2 and 4, Eq.(8) can be rewritten as

f(a)f(e1)
2 + f(a)f(e2)

2 + f(e1)
2f(a) + f(e2)

2f(a) + 2f(e1)f(a)f(e1)
+2f(e1)f(a)f(e2) + 2f(e2)f(a)f(e1) + 2f(e2)f(a)f(e2) = 4a.

(9)
Combining Eq.(9) and Eqs.(2)-(3), and noting that charR 6= 2, one obtains

f(e1)f(a)f(e2) + f(e2)f(a)f(e1) = e1ae2 + e2ae1.

This implies f(e1)f(a)f(e2) = e1ae2 and f(e2)f(a)f(e1) = e2ae1 by Claim 4.
On the other hand, multiplying by e2 from the left and the right in Eq.(6),

respectively, and by Claim 4, one gets e2f(a)f(e1)
2 = e2ae1 and f(e1)

2f(a)e2 =
e1ae2. So

f(e1)
2f(a)e2 = f(e1)f(a)f(e2) and e2f(a)f(e1)

2 = f(e2)f(a)f(e1).

It follows from Claim 4 that f(e1)
2f(a)f(e2) = f(e1)f(a)f(e2)

2 and f(e2)f(a)f(e1)
2 =

f(e2)
2f(a)f(e1).

Claim 6. f(1) ∈ Z(R).
For any a ∈ R, note that Eq.(8) holds. Multiplying by f(1) from the left

and the right in Eq.(8), respectively, by Claim 3, one gets

f(1)f(a)f(1)2 + f(a) + 2f(1)2f(a)f(1) = 4f(1)a

and
f(a) + f(1)2f(a)f(1) + 2f(1)f(a)f(1)2 = 4af(1).

Comparing the above two equations gives

4[af(1)− f(1)a] = f(1)f(a)f(1)2 − f(1)2f(a)f(1). (10)

Note that, by Claims 2-5, we have

e1[f(1)f(a)f(1)2 − f(1)2f(a)f(1)]e2
= e1[f(e1)f(a)f(e1)

2 + f(e1)f(a)f(e2)
2 + f(e2)f(a)f(e1)

2 + f(e2)f(a)f(e2)
2

−f(e1)
2f(a)f(e1)− f(e1)

2f(a)f(e2)
−f(e2)

2f(a)f(e1)− f(e2)
2f(a)f(e2)]e2 = 0;

and similarly, e2[f(1)f(a)f(1)2 − f(1)2f(a)f(1)]e1 = 0. These and Eq.(10)
imply

e1[af(1)− f(1)a]e2 = e2[af(1)− f(1)a]e1 = 0.
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Now, by Claim 3, it is clear that

f(1) = e1f(1)e1 + e2f(1)e2.

By a direct calculation, one can obtain

e1[af(1)− f(1)a]e2 = e1ae2f(1)e2 − e1f(1)e1ae2 = 0

and
e2[af(1)− f(1)a]e1 = e2ae1f(1)e1 − e2f(1)e2ae1 = 0

for all a ∈ R. That is,

e1ae2f(1)e2 = e1f(1)e1ae2 and e2ae1f(1)e1 = e2f(1)e2ae1 hold for all a ∈ R.

Note that, by [9, Lemma 3.1], the center of R is

Z(R) = {z11 + z22 : z11 ∈ R11, z22 ∈ R22, z11a12 = a12z22
and z22a21 = a21z11 for all a12 ∈ R12, a21 ∈ R21}.

It follows that f(1) = e1f(1)e1 + e2f(1)e2 ∈ Z(R).
Claim 7. f(a) = f(1)a holds for all a ∈ R.
Letting e = 1 in Eq.(1), and by Claim 6, one gets

4a = {a, 1}2 = {f(a), f(1)}2 = 4f(1)2f(a) for all a ∈ R,

which implies f(1)2f(a) = a as charR 6= 2. Multiplying f(1) from the left in
the equation and noting that f(1)3 = 1, we achieve f(a) = f(1)a for all a ∈ R.

The proof of Theorem 2.1 is finished.
Recall that a ringR is called prime if, for any a, b ∈ R, aRb = {0} ⇒ a = 0

or b = 0. It is obvious that prime rings satisfy the assumption “aRe1 = {0} ⇒
a = 0 and aR(1− e1) = {0} ⇒ a = 0” in Theorem 2.1.

Applying Theorem 2.1 to prime rings, we have

Corollary 2.2 Let R be a unital prime ring with an idempotent element
e1. Assume that the characteristic of R is not 2 and f : R → R is a surjective
map. Then f satisfies {f(a), f(e)}2 = {a, e}2 for all a ∈ R and e ∈ {e1, 1 −
e1, 1} if and only if f(1) is in the center of R with f(1)3 = 1 and f(a) = f(1)a
holds for all a ∈ R.

Let X be a Banach space with dimension greater than 1. Denote by B(X)
the algebra of all bounded linear operators on X. Recall that a standard opera-
tor algebra on X is a subalgebra of B(X) which contains the identity operator
and all finite-rank operators in B(X). It is well known that standard operator
algebras are prime. Hence, by Corollary 2.2, the following result is obvious,
which generalizes Theorem 2.1 in [12].
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Corollary 2.3 Let X be a Banach space with dimX > 1 and A a standard
operator algebra on X. Assume that Φ : A → A is a surjective map. Then f
satisfies {Φ(A),Φ(P )}2 = {A,P}2 for all A ∈ A and all idempotents P ∈ A
if and only if Φ(A) = λA holds for all A ∈ A, where λ is a scalar with λ3 = 1.

Recall that a von Neumann algebra M is a subalgebra of some B(H),
the algebra of all bounded linear operators acting on a complex Hilbert space
H, which satisfies the double commutant property: M′′ = M, where M′ =
{T : T ∈ B(H) and TA = AT ∀A ∈ M} and M′′ = {M′}′ ([2], [3]). For
A ∈ M, the central carrier of A, denoted by A, is the intersection of all
central projections P such that PA = 0. If A is self-adjoint, then the core
of A, denoted by A, is sup{S ∈ Z(M) : S = S∗, S ≤ A}. Particularly,
if A = P is a projection, it is clear that P is the largest central projection
≤ P . A projection P is core-free if P = 0. It is easy to see that P = 0
if and only if I − P = I. If M has no central summands of type I1, then
by [6], each nonzero central projection C ∈ M is the carrier of a core-free
projection in M; particularly, there exists a nonzero core-free projection P ∈
M with P = I. For such P , note that P = I − P = I. It follows from the
definition of the central carrier that both span{TP (x) : T ∈ M, x ∈ H}
and span{T (I − P )(x) : T ∈ M, x ∈ H} are dense in H. So AMP = {0}
implies A = 0 and AM(I − P ) = {0} implies A = 0. Thus, if M has no
central summands of type I1, then M satisfies the corresponding assumption
in Theorem 2.1. Therefore, By Theorem 2.1, the following result is true.

Corollary 2.4 LetM be a von Neumann algebra without central summands
of type I1. Then a surjective map Φ : M → M satisfies {Φ(A),Φ(P )}2 =
{A,P}2 for all A ∈ M and all idempotent operators P ∈ M if and only if
Φ(I) ∈ Z(M) with Φ(I)3 = I and Φ(A) = Φ(I)A for all A ∈M.
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